Betrag eines Vektors
Der Betrag bzw. die Länge eines Vektors ergeben sich aus dem Abstand zwischen seinem Anfangspunkt und seinem Endpunkt.
Hier findest du folgende Inhalte
Formeln
Beschriftung im kartesischen Koordinatensystem
Die drei Koordinatenachsen stehen im kartesischen Koordinatensystem orthogonal (in 90°) aufeinander. Die Achsen werden entweder mit x,y und z beschriftet oder mit x1, x2, x3.
Punkt im \({{\Bbb R}^2},\,\,\,{{\Bbb R}^3}\)
Die Lage eines Punkts ist durch den Abstand je Koordinatenrichtung vom Ursprung des Koordinatensystems bestimmt. Abhängig davon, wie die Koordinatenachsen beschriftet wurdenm gibt es unterschiedliche Möglichkeiten Punkte und Vektoren zu beschriften
\(\begin{array}{l} {\Bbb R^{2:}}:P\left( {{P_x}\left| {{P_y}} \right.} \right) \buildrel \wedge \over = P\left( {{P_1}\left| {{P_2}} \right.} \right)\\ {\Bbb R^3}:P\left( {{P_x}\left| {{P_y}\left| {{P_z}} \right.} \right.} \right) \buildrel \wedge \over = P\left( {{P_1}\left| {{P_2}\left| {{P_3}} \right.} \right.} \right) \end{array}\)
Skalar
Skalar ist ein Ausdruck in der Vektorrechnung für eine relle Zahl. Man verwendet den Begriff Skalar um die Richtungsunabhängigkeit einer Größe im Unterschied zum richtungsabhängigen Vektor zu betonen.
Vektor
Ein Vektor ist eine Strecke in der Ebene oder im Raum. Jeder Vektor ist durch Richtung, Orientierung und durch Betrag gekennzeichnet. Vektoren können im Raum beliebig parallelverschoben werden, d.h. ihr Anfangspunkt kann beliebig festgelegt werden, daraus ergibt sich dann ein eindeutiger Endpunkt. Vektoren spielen in der Physik eine große Rolle, so ist etwa die Geschwindigkeit kein Skalar, sondern ein Vektor.
- Geometrisch wird ein Vektor durch einen Pfeil, mit einem Schaft und einer Spitze (definiert die Orientierung) repräsentiert.
- Algebraisch sind Vektoren eindimensionale Listen von Zahlen, wobei die Komponenten des Vektors in Form von Zeilen- und als Spaltenvektor angeschrieben werden können. Die Anzahl der Komponenten eines Vektors stimmt mit der Dimension des Vektors überein. (ax,ay,az) repräsentiert also einen 3-dimensionalen Vektor. Die Reihenfolge in der die Komponenten angeschrieben werden spielt eine wesentliche Rolle dabei, in welche Richtung der Vektor zeigt
\(\eqalign{ & \overrightarrow a = \overrightarrow {{a_x}} + \overrightarrow {{a_y}} + \overrightarrow {{a_z}} = \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right) \cr & \overrightarrow a = {a_x} \cdot \overrightarrow i + {a_y} \cdot \overrightarrow j + {a_z} \cdot \overrightarrow k \cr}\)
Illustration eines Vektors vom Ursprung zum Punkt P
Gegenvektor
Den Gegenvektor erhält man, indem man den Ausgangsvektor um 180° dreht, bzw. indem man den Ausgangsvektor mit dem Skalar -1 multipliziert. Vektor und Gegenvektor haben den gleichen Betrag, die gleiche Richtung aber entgegengesetzte Orientierung.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}}
{{a_x}}\\
{{a_y}}\\
{{a_z}}
\end{array}} \right) \Leftrightarrow - \overrightarrow a = - 1 \circ \overrightarrow a = \left( {\begin{array}{*{20}{c}}
{ - {a_x}}\\
{ - {a_y}}\\
{ - {a_z}}
\end{array}} \right)\)
Betrag eines Vektors
Der Betrag bzw. die Länge des Vektors ergeben sich aus dem Abstand zwischen seinem Anfangspunkt, dem Schaft im Punkt "P" und seinem Endpunkt, also seiner Spitze in "Q".
\(\left| {\overrightarrow {PQ} } \right| = \left| {\overrightarrow v } \right| = \sqrt {{{\left( {{Q_x} - {P_x}} \right)}^2} + {{\left( {{Q_y} - {P_y}} \right)}^2} + {{\left( {{Q_z} - {P_z}} \right)}^2}} = \sqrt {{v_x}^2 + {v_y}^2 + {v_z}^2} \)
\(\left| {\overrightarrow v } \right| = \left| {\left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}}\\ {{v_z}} \end{array}} \right)} \right| = \sqrt {{v_x}^2 + {v_y}^2 + {v_z}^2} \)
Illustration zur Richtung und zur Berechnung vom Betrag eines zweidimensionalen Vektors
Richtung des Vektors
Die Richtung eins Vektors ist durch seine Lage relativ zu den Achsen des Koordinatensystems bestimmt. Ein Vektor hat eine einzige Richtung! Die Richtung des Vektors kann man aus dem Arkustangens vom Quotienten aus der Differenz der y-Koordinaten und der Differenz der x-Koordinaten zweier Punkte vom Vektor berechnen.
\(\alpha = \arctan \dfrac{{{Q_y} - {P_y}}}{{{Q_x} - {P_x}}}\)
Orientierung eines Vektors
Vektoren mit gleicher Richtung haben entweder gleiche oder entgegengesetzte Orientierung. Die Orientierung wird durch Schaft und Spitze des Vektors definiert. Ein Gegenvektor ist ein Vektor mit gleichem Betrag und gleicher Richtung aber umgekehrter Orientierung als der betrachtete Vektor.
Gleiche Vektoren
Vektoren sind gleich, wenn sie gleich lang, parallel und gleich orientiert (Pfeilspitze) sind. Gleiche Vektoren können unterschiedliche Koordinatendarstellungen haben.
Illustration zur Orientierung, zur Gleichheit von Vektoren und zum Gegenvektor eines Vektors und zu Vektoren mit gleichem Betrag
Nullvektor
Der Nullvektor \(\overrightarrow 0\) hat keine bestimmte Richtung. Seine Länge (sein Betrag) ist null. Der Nullvektor ist das neutrale Element bezüglich der Addition von Vektoren. Schaft und Spitze vom Nullvektor fallen in einem Punkt zusammen.
\(\begin{array}{l} \overrightarrow 0 = \left( {0\left| 0 \right.} \right) = \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right)\\ \overrightarrow {AA} = 0 \end{array}\)
Der Nullvektor ist kollinear zu jedem anderen Vektor und komplanar zu einer von 2 Vektoren aufgespannten Ebene.
Basisvektor
Die Basisvektoren liegen jeweils in einer Koordinatenachse, ihre Länge d.h. ihr Betrag ist 1. Sie spannen das Koordinatensystem auf. Je Dimension gibt es einen eigenen Basisvektor. Seine Komponenten bestehen aus einer "1" und sonst nur aus Nullen.
\(\eqalign{ & \overrightarrow i = \left( {\matrix{ 1 \cr 0 \cr } } \right) \cr & \overrightarrow j = \left( {\matrix{ 0 \cr 1 \cr } } \right) \cr}\)
Einheitsvektor
Der Einheitsvektor \( \overrightarrow {{r_0}}\), hat dieselbe Richtung wie der Richtungs- bzw. der Ortsvektor \( \overrightarrow r\), seine Länge wurde aber auf 1 normiert.
\(\eqalign{ & \overrightarrow {{r_0}} = {{\overrightarrow r } \over {\left| r \right|}} = \left( {\matrix{ {{{{r_x}} \over {\sqrt {{{\left( {{r_x}} \right)}^2} + {{\left( {{r_y}} \right)}^2}} }}} \cr {{{{a_y}} \over {\sqrt {{{\left( {{r_x}} \right)}^2} + {{\left( {{r_y}} \right)}^2}} }}} \cr } } \right) \cr & {\rm{mit}}\,\,\,\left| {\overrightarrow r } \right| \ne 0 \cr}\)
Ortsvektor
Der Ortsvektor ist der Vektor vom Ursprung des Koordinatensystems zu einem gegebenen Punkt. Ein Ortsvektor \(\overrightarrow a\) hat seinen Anfang immer im Ursprung des Koordinatensystems. Seine Richtung, Orientierung und Betrag ergeben sich aus der Lage seines Endpunkts. Einen Ortsvektor darf man daher nicht parallel verschieben, man darf auch nicht seinen Betrag ändern.
\(\overrightarrow a = x.\overrightarrow i + y.\overrightarrow j = \left( {\matrix{ x \cr y \cr } } \right) = \left( {x,y} \right)\)
Verbindungsvektor
Der Verbindungsvektor verbindet zwei Punkte im Raum. Es sind die Punkte P (Px l Py) und Q (Qx l Qy) gegeben. Der Verbindungsvektor ist jener Vektor, der in P seinen Schaft und in Q seine Spitze hat. Um ihn zu berechnen subtrahiert man vom Ortsvektor zu Q (Spitze) den Ortsvektor zu P (Schaft). Einen Verbindungsvektor darf man daher nicht parallel verschieben, man darf auch nicht seinen Betrag oder seine Orientierung ändern.
In \({{\Bbb R}^2}\):
\(\overrightarrow v = \overrightarrow {PQ} = \overrightarrow {UQ} - \overrightarrow {UP} = Q - P = \left( {\begin{array}{*{20}{c}} {{Q_x} - {P_x}}\\ {{Q_y} - {P_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}} \end{array}} \right)\)
In \({{\Bbb R}^3}\):
\(\begin{array}{l} A\left( {{A_x}\left| {{A_y}\left| {{A_z}} \right.} \right.} \right)\\ B\left( {{B_x}\left| {{B_y}\left| {{B_z}} \right.} \right.} \right)\\ \overrightarrow {AB} = B - A = \left( {\begin{array}{*{20}{c}} {{B_x} - {A_x}}\\ {{B_y} - {A_y}}\\ {{B_z} - {A_z}} \end{array}} \right) \end{array}\)
"Spitze minus Schaft Regel": Man erhält den Verbindungsvektor zweier Punkte, indem man Komponentenweise die Koordinaten von der Spitze minus jener vom Schaft anschreibt.
Illustration vom Verbindungsvektor zwischen 2 Punkten
Richtungsvektor als Parallelvektor zum Verbindungsvektor
Der Richtungsvektor \(\overrightarrow r\) ist entweder der Verbindungsvektor oder ein zum Verbindungsvektor paralleler Vektor. Der Richtungsvektor hat zwar eine definierte Länge, aber keine feste Position im Koordinatensystem d.h. er kann parallel verschoben werden und ist noch immer ein Richtungsvektor. Der Verbindungsvektor ist ein besonderer Richtungsvektor, weil sein Anfangs- bzw. Endpunkt mit den besonderen Punkten P und Q zusammenfallen.
Mehrdimensionaler Vektor
Die Anzahl der Komponenten eines Vektors entspricht der Dimension des Raums. Dreidimensionale Vektoren spannen den uns vertrauten dreidimensionalen Raum aus Breite, Tiefe und Höhe auf. Vierdimensionale Vektoren spannen die Raum-Zeit der Physik auf. Bei höherdimensionalen Vektoren nummeriert man die Komponenten, weil die Dimensionen mitunter keinen anschaulichen Namen haben.
\(\eqalign{ & P = \left( {{P_1}\left| {{P_2}\left| {...\left| {{P_n}} \right.} \right.} \right.} \right) \cr & Q = \left( {{Q_1}\left| {{Q_2}\left| {...\left| {{Q_n}} \right.} \right.} \right.} \right) \cr}\)
n-dimensionaler Richtungsvektor von P nach Q:
\(\overrightarrow {PQ} = \left( {\begin{array}{*{20}{c}} {{Q_1} - {P_1}}\\ {{Q_2} - {P_2}}\\ {...}\\ {{Q_n} - {P_n}} \end{array}} \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 104
Verbindungsvektor
Es sind folgende 2 Punkte gegeben:
\(P\left( {\matrix{ {15} \cr { - 2} \cr 2 \cr } } \right);\,\,\,\,\,Q\left( {\matrix{ 3 \cr 2 \cr 5 \cr } } \right);\)
1. Teilaufgabe: Berechne die Koordinaten des Verbindungsvektors: \(\overrightarrow v = \overrightarrow {PQ}\)
2. Teilaufgabe: Berechne den Betrag des Verbindungsvektors: \(\left| {\overrightarrow v } \right|\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 108
Parallelogramm mittels Vektoren berechnen
Gegeben ist ein Parallelogramm mit:
\(A\left( {\begin{array}{*{20}{c}} 2\\ { - 2} \end{array}} \right);\,\,\,\,\,B\left( {\begin{array}{*{20}{c}} 3\\ 1 \end{array}} \right);\,\,\,\,\,C\left( {\begin{array}{*{20}{c}} { - 4}\\ 3 \end{array}} \right);\)
1. Teilaufgabe: Prüfe, ob es sich tatsächlich „nur“ um ein Parallelogramm handelt, oder ob nicht sogar ein Rechteck vorliegt
2. Teilaufgabe: Berechne die Koordinaten von D auf 2 Arten
3. Teilaufgabe: Berechne den Umfang der Figur
Aufgabe 4057
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Straßenbau - Aufgabe B_408
Teil b
Zwischen zwei Punkten C und D soll eine geradlinige Verbindungsstraße errichtet werden (siehe nachstehendes Koordinatensystem).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koordinaten des Vektors \(\overrightarrow {CD} \)
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des Vektors \(\overrightarrow {CD} \)
[1 Punkt]
Aufgabe 84
Vektoren in der Physik
Erkläre an Hand zweier Beispiele aus der Physik, was einen Vektor ausmacht.
Aufgabe 4331
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Boule - Aufgabe B_444
Boule ist eine Sportart, bei der Kugeln geworfen werden. Ziel ist es, mit den eigenen Kugeln möglichst nah an eine Zielkugel zu gelangen.
Teil b
Für eine genauere Analyse eines Boule-Spiels wird mithilfe einer Drohne ein Luftbild aufgenommen.
- A = (2 | 10) ... Auflagepunkt der ersten Kugel
- B = (17 | 6) ... Auflagepunkt der zweiten Kugel
- Z = (4 | 1) ... Auflagepunkt der Zielkugel
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Lange der Strecke BZ.
[1 Punkt]
Während des Spiels bewegt sich die erste Kugel entlang der Strecke AB 3 cm in Richtung B.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Koordinaten der neuen Position des Auflagepunkts der ersten Kugel.
[2 Punkte]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4395
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
W-LAN - Aufgabe B_475
In einer Fabrikshalle wird mit Access-Points und Repeatern ein W-LAN eingerichtet. Ein Access-Point verbindet einen Laptop kabellos mit einem Netzwerk. Ein Repeater verstärkt das Signal. Die Datenübertragungsrate beschreibt die übertragene Datenmenge pro Zeiteinheit und wird meist in der Einheit Megabit pro Sekunde (Mbit/s) angegeben.
Teil c
Im Rahmen einer Testinstallation werden in der Fabrikshalle ein Access-Point, ein Repeater und 2 Laptops auf gleich hohe Tische gestellt (siehe nachstehende schematische Abbildung, Ansicht von oben).
Im Punkt A = (30 | 0) befindet sich der Access-Point. Die Laptops in den Punkten P1 = (20 | 2) und P2 = (45 | 20) sollen diesen Access-Point nutzen können.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie mithilfe der Vektorrechnung, dass der Winkel α kleiner als 120° ist.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der obigen Abbildung denjenigen Punkt P3 ein, der folgendermaßen bestimmt werden kann:
\(\overrightarrow {O{P_3}} = \overrightarrow {O{P_2}} - \dfrac{1}{3} \cdot \overrightarrow {{P_1}{P_2}} \)
1 Punkt]
Ein Repeater soll im Punkt R = (xR | 30) in einem Abstand von 40 m vom Access-Point im Punkt A montiert werden (siehe obige Abbildung).
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie xR.
[1 Punkt]
Aufgabe 4433
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil c
In der nachstehenden Abbildung ist modellhaft ein Koffer auf einem Gepäckförderband dargestellt. Der Koffer bewegt sich mit der Geschwindigkeit \(\overrightarrow v = \left( {\begin{array}{*{20}{c}} {1,2} \\ {0,5} \end{array}} \right)\,\,\dfrac{m}{s}\) vom Punkt A zum Punkt B.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie \(\left| {\overrightarrow v } \right|{\text{ in }}\dfrac{m}{{\min }}\)
[0 / 1 P.]
Anschließend bewegt sich der Koffer mit der Geschwindigkeit \(\overrightarrow w = \left( {\begin{array}{*{20}{c}} { - 1} \\ {{y_w}} \end{array}} \right)\dfrac{m}{s}\) vom Punkt B zum Punkt C. Die beiden Vektoren v und w stehen normal aufeinander.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie yw.
[0 / 1 P.]
Aufgabe 4436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil c
Im Schlosspark gibt es ein Labyrinth aus Hecken. Der Weg durch das Labyrinth wird durch Aneinanderreihen der Vektoren
\(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c ,\,\,...\,\,,\overrightarrow h \)
(in alphabetischer Reihenfolge) beschrieben. Dabei beginnt jeder Vektor an der Spitze des vorherigen Vektors. Es gilt:
\(\overrightarrow e = \left( {\begin{array}{*{20}{c}} 0 \\ 3 \end{array}} \right);\,\,\,\overrightarrow f = \left( {\begin{array}{*{20}{c}} { - 2} \\ 0 \end{array}} \right);\,\,\,\overrightarrow g = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right);\,\,\,\overrightarrow h = \left( {\begin{array}{*{20}{c}} 4 \\ 0 \end{array}} \right)\)
In der nachstehenden Abbildung ist die quadratische Grundfläche des Labyrinths dargestellt. Der Startpunkt A des Weges durch das Labyrinth, die ersten vier Vektoren und der Punkt P sind bereits eingezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.
\(\begin{gathered} {b_x} = \boxed{} \hfill \\ {b_y} = \boxed{} \hfill \\ \end{gathered} \)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Länge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie ausgehend vom Punkt P den Weg durch das Labyrinth durch Einzeichnen der Vektoren \(\overrightarrow e ,\,\,\,\overrightarrow f ,\,\,\,\overrightarrow g {\text{ und }}\overrightarrow h \)
4. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf die gegebenen Vektoren nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Die Vektoren a und c sind Gegenvektoren.
- Aussage 2: Die Vektoren f und g haben den gleichen Betrag.
- Aussage 3: Die Vektoren f und h sind parallel.
- Aussage 4: Die Vektoren d und e haben den gleichen Betrag.
- Aussage 5: Die Vektoren d und e stehen normal aufeinander.
Aufgabe 4502
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Attersee - Aufgabe B_524
Teil c
Die beiden Orte Nußdorf und Weyregg liegen auf einander gegenüberliegenden Ufern des Attersees. Die Schiffsanlegestellen Nußdorf (N) und Weyregg (W) sind im nachstehenden Koordinatensystem dargestellt.
Die Entfernung zwischen den Punkten N und W betragt 3,5 km. Die Gerade durch die Punkte N und W hat den Richtungsvektor \(\overrightarrow v = \left( {\begin{array}{*{20}{c}} 4 \\ 3 \end{array}} \right)\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie den Vektor NW.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6013
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Gerade g verläuft durch die Punkte A(0 |1| 2) und B(2 | 5 | 6).
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass die Punkte A und B den Abstand 6 haben.
Die Punkte C und D liegen auf g und haben von A jeweils den Abstand 12.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von C und D.
Die Punkte A, B und E(1| 2 | 5) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten. Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.
Aufgabe 6014
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Betrachtet wird die Pyramide ABCDS mit A(0 | 0 | 0), B(4 | 4 | 2) , C(8 | 0 | 2), D(4 | -4 | 0) und S(1|1| -4) . Die Grundfläche ABCD ist ein Parallelogramm.
Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Weisen Sie nach, dass das Parallelogramm ABCD ein Rechteck ist.
Die Kante \(\left[ {AS} \right]\) senkrecht auf der Grundfläche ABCD. Der Flächeninhalt der Grundfläche beträgt \(24 \cdot \sqrt 2 \)
Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie das Volumen der Pyramide.
Aufgabe 6029
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem kartesischen Koordinatensystem sind
- die Ebene \(E:{x_1} + {x_3} = 2\)
- der Punkt \(A\left( {0\left| {\sqrt 2 \left| 2 \right.} \right.} \right)\)
- und die Gerade \(g:\overrightarrow X = \overrightarrow A + \lambda \cdot \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right),\,\,\,\lambda \in {\Bbb R }\)
gegeben.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Beschreiben Sie, welche besondere Lage die Ebene E im Koordinatensystem hat.
2. Teilaufgabe a.2) 1 BE - Bearbeitungszeit 2:20
Weisen Sie nach, dass die Ebene E die Gerade g enthält.
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Koordinaten der Schnittpunkte von E mit der x1-Achse und mit der x3 -Achse an.
4. Teilaufgabe a.4) 2 BE - Bearbeitungszeit: 4:40
Veranschaulichen Sie die Lage der Ebene E sowie den Verlauf der Geraden g in einem kartesischen Koordinatensystem (vgl. Abbildung).
Die x1x2-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt A und verläuft entlang der Geraden g. Der Vektor
\(\overrightarrow v = \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right)\)
beschreibt die Fahrtrichtung auf diesem Abschnitt.
5. Teilaufgabe b.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.
6. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie im Modell die zugehörige Steigung dieses Abschnitts in Prozent.
An den betrachteten geraden Abschnitt der Achterbahn schließt sich – in Fahrtrichtung gesehen – eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene E verläuft und den Mittelpunkt \(M\left( {0\left| {3 \cdot \sqrt 2 \left| 2 \right.} \right.} \right)\) hat. Das Lot von M auf g schneidet g im Punkt B. Im Modell stellt B den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von B.
8. Teilaufgabe c.2) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie den Kurvenradius im Modell.
(Teilergebnis: \(B\left( { - 1\left| {2 \cdot \sqrt 2 \left| 3 \right.} \right.} \right)\)
Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt C beschrieben.
9. Teilaufgabe d) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass für den Ortsvektor des Punkts C gilt: \(\overrightarrow C = \overrightarrow M + \overrightarrow v \)
Ein Wagen der Achterbahn durchfährt den Abschnitt, der im Modell durch die Strecke [AB] und den Viertelkreis von B nach C dargestellt wird, mit einer durchschnittlichen Geschwindigkeit von 15 m/s.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie die Zeit, die der Wagen dafür benötigt, auf Zehntelsekunden genau, wenn eine Längeneinheit im Koordinatensystem 10 m in der Realität entspricht.