Parameter einer Funktion
Parameterfunktionen enthalten in ihren Funktionsgleichungen nicht nur die abhängige y-Variable und die unabhängige x-Variable, sondern auch einen oder mehrere Parameter (a, b, c, d). Durch die Variation dieser Parameter streckt, staucht oder verschiebt man den Graph der Funktion.
Hier findest du folgende Inhalte
Formeln
Parameterfunktionen
Parameterfunktionen enthalten in ihren Funktionsgleichungen nicht nur die abhängige y-Variable und die unabhängige x-Variable, sondern auch einen oder mehrere Parameter (a, b, c, d). Durch die Variation dieser Parameter streckt, staucht oder verschiebt man den Graph der Funktion.
Parameter einer Sinusfunktion
Über Parameter kann die Form von Funktionen verändert werden.
\(f\left( x \right) = a \cdot \sin \left( {b \cdot x + c} \right) + d\)
- Der Faktor a bewirkt eine Streckung oder Stauchung der „Höhe“ - der sogenannten Amplitude.
- Der Faktor b bewirkt eine Änderung der Periodendauer - dem Kehrwert der Frequenz - also einer Streckung oder Stauchung in Richtung der x-Achse
- Der Summand c im Argument bewirkt eine Phasenverschiebung (Zeitpunkt des „Null-Durchgangs) in Richtung der x-Achse (=Parallelverschiebung in Richtung der x-Achse).
- Der Summand d bewirkt eine Parallelverschiebung der Funktion in Richtung der y-Achse.
Funktionsschar
Eine Schar ist eine Anzahl von Funktionsgraphen, die jeweils aus einer gegebenen Funktionsgleichung mit veränderlichen Parametern hervorgehen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgaben
Aufgabe 6020
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
beschreibt für \(x \geqslant 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet h(x) die momentane Schadstoffabbaurate in Gramm pro Minute und x die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt x, zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.
Die in \({\Bbb R}\backslash \left\{ { - 3;1} \right\}\) definierte Funktion
\(k:x \mapsto 3 \cdot \left( {\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}} \right) - 0,2\)
stellt im Bereich \( - 0,5 \leqslant x \leqslant 2\) eine gute Näherung für die Funktion h dar.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Beschreiben Sie, wie der Graph der Funktion k aus dem Graphen der Funktion \(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\) hervorgeht.
3. Teilaufgabe c.1) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie einen Näherungswert für \(\int\limits_0^1 {h\left( x \right)} \,\,dx\), indem Sie den Zusammenhang \(\int\limits_0^1 {h\left( x \right)} \,\,dx \approx \int\limits_0^1 {k\left( x \right)} \,\,dx\) verwenden.
4. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Bedeutung dieses Werts im Sachzusammenhang an.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 6004
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Polynomfunktion 3. Grades
Gegeben ist die Funktion f mit
\(f\left( x \right) = {x^3} - 6 \cdot {x^2} + 11 \cdot x - 6{\text{ und }}x \in {\Bbb R}\)
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Weisen Sie nach, dass der Wendepunkt des Graphen von f auf der Geraden mit der Gleichung \(y = x - 2\) liegt.
Der Graph von f wird verschoben. Der Punkt (2 | 0) des Graphen der Funktion f besitzt nach der Verschiebung die Koordinaten (3 | 2). Der verschobene Graph gehört zu einer Funktion h.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Geben Sie eine Gleichung von h an.
Aufgabe 6031
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(f:x \mapsto 20 \cdot \ln \left( {\dfrac{{20x}}{{1 - x}}} \right){\rm{ mit }}{D_f} = \left] {0;1} \right[\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Nullstelle von f.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Untersuchen Sie das Verhalten von f an den Grenzen von Df
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Gleichungen der Asymptoten von Gf an.
4. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass f in Df umkehrbar ist.
5. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Untersuchen Sie das Krümmungsverhalten von Gf .
6. Teilaufgabe b.3) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Gleichung der Tangente w an Gf im Wendepunkt W von Gf .
(zur Kontrolle: x-Koordinate von W: 1/2)
Verschiebt man Gf so, dass der Wendepunkt W im Ursprung liegt, erhält man den Graphen der Funktion g.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie den Funktionsterm von g an.
8. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Welche Folgerung für Gf ergibt sich aus der Tatsache, dass der Graph von g punktsymmetrisch bezüglich des Koordinatenursprungs ist?
9. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Zeichnen Sie Gf und die Tangente w unter Berücksichtigung der bisherigen Ergebnisse in ein geeignet skaliertes Koordinatensystem ein.
Gf schließt mit den Koordinatenachsen und der Tangente w ein Flächenstück mit dem Inhalt A ein.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie A.
Aufgabe 1572
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionstypen
Im Folgenden sind vier Funktionsgleichungen (mit a, b ∈ ℝ+) angeführt und die Graphen von sechs reellen Funktionen dargestellt.
- Funktionsgleichung 1: \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\)
- Funktionsgleichung 2: \(f\left( x \right) = a \cdot {b^x}\)
- Funktionsgleichung 3: \(f\left( x \right) = a \cdot \sqrt x + b\)
- Funktionsgleichung 4: \(f\left( x \right) = a \cdot x + b\)
- Graph A:
- Graph B:
- Graph C:
- Graph D:
- Graph E:
- Graph F:
Aufgabenstellung
Ordnen Sie den vier Funktionsgleichungen jeweils den passenden Graphen (aus A bis F) zu!
Aufgabe 1389
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parabeln zuordnen
Gegeben sind die Graphen von sechs Funktionen f1, f2, f3, f4, f5 und f6 mit der Gleichung \({f_i}\left( x \right) = a \cdot {x^2} + b\) mit \(a,b \in {\Bbb R}{\text{ und }}a \ne 0{\text{ }}\left( {{\text{i von 1 bis 6}}} \right)\).
- Graph 1 der Funktion f1
- Graph 2 der Funktion f2
- Graph 3 der Funktion f3
- Graph 4 der Funktion f4
- Graph 5 der Funktion f5
- Graph 6 der Funktion f6
Aufgabenstellung:
Ordnen Sie den folgenden Eigenschaften / Aussagen (A..D) jeweils den entsprechenden Graphen der dargestellten Funktionen (aus 1 bis 6) zu!
- Aussage A: a < 0 und b < 0
- Aussage B: a < 0 und b > 0
- Aussage C: a > 0 und b < 0
- Aussage D: a > 0 und b > 0
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1362
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer quadratischen Funktion
Gegeben ist der Graph einer Funktion g mit
\(g\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb Z}{\text{ und a}} \ne {\text{0}}\)
Aufgabenstellung:
Geben Sie die Parameter a und b so an, dass sie zum abgebildeten Graphen von g passen!