Mathematik Zentralmatura BHS - September 2021 - kostenlos vorgerechnet
Die Beispiele aus diesem BHS Maturatermin werden vorgerechnet und verständlich erklärt.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4468
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speerwurf - Aufgabe A_303
Teil a
Der Wurfbereich beim Speerwurf hat die Form eines Kreissektors (siehe nachstehende nicht maßstabgetreue Abbildung in der Ansicht von oben).
z ist die Differenz aus der tatsächlichen Wurfweite w = ML und der Streckenlänge MP.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie unter Verwendung von w und α eine Formel zur Berechnung von z auf.
z =
[0 / 1 P.]
Für die Bogenlänge b des Kreissektors und den Öffnungswinkel α des Kreissektors gilt:
- b = 48,08 m
- α = 29°
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Radius r des Kreissektors.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4469
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speerwurf - Aufgabe A_303
Teil b
Ein Teil des Graphen der Funktion f beschreibt die Flugbahn der Speerspitze bei einem bestimmten Wurf.
\(f\left( x \right) = - 0,01 \cdot {x^2} + 0,7 \cdot x + 1,8{\text{ mit }}x \geqslant 0\)
x |
horizontale Entfernung vom Abwurfpunkt in m |
f(x) | Höhe über dem Boden bei der horizontalen Entfernung x in m |
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die horizontale Entfernung vom Abwurfpunkt, in der die Speerspitze bei diesem Wurf auf dem Boden auftrifft.
[0 / 1 P.]
Aufgabe 4470
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Speerwurf - Aufgabe A_303
Teil c
Die quadratische Funktion h beschreibt die Höhe der Speerspitze während eines bestimmten Wurfes in Abhängigkeit von der Zeit t (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Satzanfängen jeweils eine Fortsetzung aus A bis D so zu, dass zutreffende Aussagen entstehen.
[0 / 1 P.]
- Satzanfang 1: Die momentane Änderungsrate von h zur Zeit t ist negativ für
- Satzanfang 2: Die momentane Änderungsrate von h zur Zeit t ist null für
- Aussage A: \(t = 0\)
- Aussage B: \(t = {t_1}\)
- Aussage C: \(t < {t_1}\)
- Aussage D: \(t > {t_1}\)
Aufgabe 4471
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kartenspiel - Aufgabe A_304
Teil a
Ein Kartenstapel besteht aus 20 Diener-Karten und 10 Zauber-Karten. Sabine zieht zufällig ohne Zurücklegen 3 Karten aus diesem Kartenstapel.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass Sabine dabei genau 1 Zauber-Karte zieht.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Beschreiben Sie ein Ereignis E im gegebenen Sachzusammenhang, dessen Wahrscheinlichkeit mit dem nachstehenden Ausdruck berechnet wird.
\(P\left( E \right) = 1 - \dfrac{{20}}{{30}} \cdot \dfrac{{19}}{{29}} \cdot \dfrac{{18}}{{28}} \approx 0,719\)
[0 / 1 P.]
Aufgabe 4472
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kartenspiel - Aufgabe A_304
Teil b
Lukas wählt für 40 % seiner Spiele eine aggressive Strategie, für die restlichen Spiele wählt er eine defensive Strategie.
- Spiele, für die er eine aggressive Strategie wählt, gewinnt er mit der Wahrscheinlichkeit p.
- Spiele, für die er eine defensive Strategie wählt, gewinnt er mit einer Wahrscheinlichkeit von 54 %.
1. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie das nachstehende Baumdiagramm so, dass es den beschriebenen Sachverhalt wiedergibt.
[0 / 1 P.]
Die Wahrscheinlichkeit, dass Lukas ein zufällig ausgewähltes Spiel gewinnt, beträgt 53,2 %.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit p.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4473
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leuchtdioden - Aufgabe A_305
Leuchtdioden (LEDs) werden häufig als Beleuchtungsmittel verwendet.
Teil a
LEDs haben einen begrenzten Öffnungswinkel. Für eine sogenannte Rundum-Beleuchtung werden daher mehrere LEDs benötigt. Die Anzahl der LEDs gleicher Bauart, die für eine Rundum-Beleuchtung benötigt werden, kann gemäß der nachstehenden Vorschrift berechnet werden.
- Dividiere 1 durch den Sinus von einem Viertel des Öffnungswinkels.
- Quadriere die erhaltene Zahl.
- Ist das nun erhaltene Ergebnis nicht ganzzahlig, dann runde es auf die nächstgrößere ganze Zahl auf.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Anzahl der LEDs mit einem Öffnungswinkel von 40°, die man gemäß der obigen Vorschrift
Aufgabe 4474
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leuchtdioden - Aufgabe A_305
Leuchtdioden (LEDs) werden häufig als Beleuchtungsmittel verwendet.
Teil b
Die Lebensdauer von LEDs ist abhängig von der Temperatur am LED-Chip. Auf einer Website ist dieser Zusammenhang grafisch dargestellt (siehe nachstehende Abbildung).
Quelle: https://www.led-studien.de/wp-content/uploads/2015/10/Lebensdauer-nach-… [16.08.2019] (adaptiert).
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die mittlere Änderungsrate der Lebensdauer bei Erhöhung der Temperatur von 140 °C auf 160 °C.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Begründen Sie, warum es sich bei der in der obigen Abbildung dargestellten Kurve nicht um den Graphen einer Funktion handeln kann.
[0 / 1 P.]
Aufgabe 4475
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leuchtdioden - Aufgabe A_305
Leuchtdioden (LEDs) werden häufig als Beleuchtungsmittel verwendet.
Teil c
Ein Maß für die Helligkeit einer Lichtquelle ist der sogenannte Lichtstrom. Dieser wird in der Einheit Lumen angegeben. Man geht davon aus, dass der maximale Lichtstrom von LEDs durch technische Weiterentwicklung exponentiell ansteigen wird. Dabei gilt: Alle 10 Jahre steigt der maximale Lichtstrom von LEDs auf das 20-Fache. Diese Entwicklung kann durch eine Exponentialfunktion L modelliert werden.
\(L\left( t \right) = {L_0} \cdot {a^t}\)
t | Zeit in Jahren |
L(t) |
maximaler Lichtstrom zur Zeit t in Lumen |
L0 | maximaler Lichtstrom zur Zeit t = 0 in Lumen |
a | positiver Parameter |
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Parameter a.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert des Parameters a im gegebenen Sachzusammenhang.
[0 / 1 P.]
Aufgabe 4476
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosmetikartikel - Aufgabe A_306
Teil a
Ein Parfum wird in bestimmte Fläschchen abgefüllt. Das Füllvolumen wird dabei als annähernd normalverteilt mit der Standardabweichung σ = 1,5 ml angenommen. In der nachstehenden Abbildung ist der Graph der zugehörigen Verteilungsfunktion dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie aus der obigen Abbildung den Erwartungswert μ des Füllvolumens ab.
μ = ml
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem das Füllvolumen eines zufällig ausgewählten Fläschchens mit einer Wahrscheinlichkeit von 80 % liegt.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, dass das Füllvolumen eines zufällig ausgewählten Fläschchens höchstens 76 ml beträgt.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4477
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosmetikartikel - Aufgabe A_306
Teil b
Ein bestimmter Kosmetikartikel wurde sowohl von männlichen als auch von weiblichen Kunden gekauft. Eine Erhebung zum Alter aller Kunden, die diesen Kosmetikartikel gekauft haben, ist in der nachstehenden Abbildung in Form zweier Boxplots zusammengefasst.
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Die Spannweite des Alters der weiblichen Kunden ist kleiner als diejenige der männlichen Kunden.
- Aussage 2: Die jüngste Person, die den Kosmetikartikel gekauft hat, ist männlich.
- Aussage 3: Der Median des Alters der männlichen Kunden ist größer als derjenige der weiblichen Kunden.
- Aussage 4: Mehr als die Hälfte der weiblichen Kunden ist älter als 65 Jahre.
- Aussage 5: Das 3. Quartil des Alters der weiblichen Kunden ist größer als dasjenige der männlichen Kunden.
Aufgabe 4478
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzfeuchte und Holztrocknung - Aufgabe A_307
Teil a
Beim Trocknen verkürzen sich die Seitenlängen eines feuchten quaderförmigen Holzstücks.
a, b, c |
Seitenlängen des quaderförmigen Holzstücks in feuchtem Zustand |
In trockenem Zustand ist die Seitenlänge a um 0,5 %, die Seitenlänge b um 10 % und die Seitenlänge c um 5 % kürzer als in feuchtem Zustand.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung des Volumens V des quaderförmigen Holzstücks in trockenem Zustand auf. Verwenden Sie dabei die Seitenlängen a, b und c.
V =
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie, um wie viel Prozent das Volumen des quaderförmigen Holzstücks in trockenem Zustand kleiner als in feuchtem Zustand ist.
[0 / 1 P.]
Aufgabe 4479
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzfeuchte und Holztrocknung - Aufgabe A_307
Teil b
Holzbretter der gleichen Holzsorte mit verschiedenen Dicken trocknen unterschiedlich schnell. Dieser Zusammenhang kann näherungsweise durch die nachstehende Formel beschrieben werden.
\(\dfrac{T}{t} = {\left( {\dfrac{D}{d}} \right)^{1,5}}\)
Dicke | Trockenzeit | |
Holzbrett 1 | d | t |
Holzbrett 2 | D | T |
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie denjenigen Ausdruck an, der nicht dem obigen Zusammenhang entspricht.
[1 aus 5]
- Ausdruck 1: \(\dfrac{T}{t} = {\left( {\dfrac{D}{d}} \right)^{\dfrac{3}{2}}}\)
- Ausdruck 2: \(\dfrac{T}{t} = {\left( {\dfrac{d}{D}} \right)^{ - 1,5}}\)
- Ausdruck 3: \(\dfrac{T}{t} = \sqrt {{{\left( {\dfrac{D}{d}} \right)}^3}} \)
- Ausdruck 4: \(\dfrac{t}{T} = {\left( {\dfrac{d}{D}} \right)^{ - \dfrac{3}{2}}}\)
- Ausdruck 5: \(\dfrac{t}{T} = {\left( {\dfrac{d}{D}} \right)^{1,5}}\)