BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.2
Rechenregeln für Potenzen mit ganzzahligen und rationalen Exponenten verstehen und anwenden; Potenz- und Wurzelschreibweise ineinander überführen
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4075
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Genussformel - Aufgabe A_263
Teil c
Ein Ei einer bestimmten Größe wird gekocht. Der zeitliche Verlauf der Innentemperatur wird mithilfe der Funktion T modelliert:
\(T\left( t \right) = 100 - 192 \cdot {e^{ - \dfrac{{25 \cdot t}}{{81}}}}\) mit \(t \ge 3\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, nach welcher Kochzeit eine Innentemperatur von 84 °C erreicht wird.
[1 Punkt]
Die Potenz \({e^{ - \dfrac{{25 \cdot t}}{{81}}}}\) wird in Wurzelschreibweise und mit positiver Hochzahl dargestellt.
- Aussage 1: \(\dfrac{1}{{\sqrt[{81}]{{{e^{25 \cdot t}}}}}}\)
- Aussage 2: \(\sqrt[{81}]{{{e^{25 \cdot t}}}}\)
- Aussage 3: \( - \sqrt[{81}]{{{e^{25 \cdot t}}}}\)
- Aussage 4: \( - \sqrt[{25}]{{{e^{81 \cdot t}}}}\)
- Aussage 5: \(\dfrac{1}{{\sqrt[{25}]{{{e^{81 \cdot t}}}}}}\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Darstellung an.
[1 aus 5] [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4250
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sicherheit auf dem Schulweg - Aufgabe A_293
Im Nahbereich von Schulen stellen die zu- und abfahrenden Fahrzeuge ein großes Problem dar.
Teil c
Der relative Anteil derjenigen Schüler/innen, die mit dem Auto zur Schule gebracht werden, kann für einen bestimmten Zeitabschnitt modellhaft durch die Funktion f beschrieben werden.
\(f\left( t \right) = 0,1 + 0,2 \cdot {b^t}\)
mit:
- t ... Zeit ab Beginn der Beobachtung
- f(t) ... relativer Anteil derjenigen Schüler/innen, die mit dem Auto zur Schule gebracht werden, zur Zeit t
- b ... Parameter (b > 0, b ≠ 1)
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie den Einfluss des Parameters b auf das Monotonieverhalten der Funktion f.
[1 Punkt]
Folgende Berechnung wurde durchgeführt:
\(f\left( 0 \right) = 0,1 + 0,2 \cdot {b^0} = 0,1 + 0 = 0,1\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, welcher Fehler bei dieser Berechnung gemacht wurde.
[1 Punkt]
Aufgabe 4479
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzfeuchte und Holztrocknung - Aufgabe A_307
Teil b
Holzbretter der gleichen Holzsorte mit verschiedenen Dicken trocknen unterschiedlich schnell. Dieser Zusammenhang kann näherungsweise durch die nachstehende Formel beschrieben werden.
\(\dfrac{T}{t} = {\left( {\dfrac{D}{d}} \right)^{1,5}}\)
Dicke | Trockenzeit | |
Holzbrett 1 | d | t |
Holzbrett 2 | D | T |
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie denjenigen Ausdruck an, der nicht dem obigen Zusammenhang entspricht.
[1 aus 5]
- Ausdruck 1: \(\dfrac{T}{t} = {\left( {\dfrac{D}{d}} \right)^{\dfrac{3}{2}}}\)
- Ausdruck 2: \(\dfrac{T}{t} = {\left( {\dfrac{d}{D}} \right)^{ - 1,5}}\)
- Ausdruck 3: \(\dfrac{T}{t} = \sqrt {{{\left( {\dfrac{D}{d}} \right)}^3}} \)
- Ausdruck 4: \(\dfrac{t}{T} = {\left( {\dfrac{d}{D}} \right)^{ - \dfrac{3}{2}}}\)
- Ausdruck 5: \(\dfrac{t}{T} = {\left( {\dfrac{d}{D}} \right)^{1,5}}\)
Aufgabe 4518
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zirbenholzbetten - Aufgabe A_309
Ein Unternehmen stellt Betten aus Zirbenholz mit einem Kopfteil her.
Teil b
Zur Modellierung der oberen Begrenzungslinie eines anderen Kopfteils wird eine Funktion g verwendet.
\(g\left( x \right) = a \cdot {x^4} + b \cdot {x^2} + c\)
x, g(x) ... Koordinaten in m
1. Teilaufgabe - Bearbeitungszeit 05:40
Argumentieren Sie anhand der Funktionsgleichung, dass gilt: g(x) = g(–x).
[0 / 1 P.]
Aufgabe 4524
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trinkwasser – Aufgabe A_311
Teil b
Der pH-Wert des Trinkwassers wird regelmäßig überprüft. Der pH-Wert ist folgendermaßen definiert:
\(pH = - {\log _{10}}\left( a \right)\)
a | Wasserstoffionen-Aktivität (a > 0) |
Der Ausdruck \( - {\log _{10}}\left( a \right)\) soll umgeformt werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
\( - {\log _{10}}\left( a \right) = {\log _{10}}\left( {{a^{??}}} \right) = {\log _{10}}\left( {\frac{1}{{??}}} \right)\)
Vervollständigen Sie die nachstehende Umformung durch Eintragen in die beiden Kästchen.
[0 / 1 P.]
Ein pH-Wert von 6,5 entspricht einer Wasserstoffionen-Aktivität von 10–6,5. Die Zahl 10–6,5 kann auch in der Form \(\sqrt {{{10}^z}} \) geschrieben werden, wobei z eine ganze Zahl ist.
2. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie diese Zahl z an.
z =
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.