Prozentuelle Änderung
Die prozentuelle Änderung ist die absolute Änderung „bezogen auf den“ oder „relativ zum“ Grundwert. Der Grundwert ist zugleich der 100% Wert.
Hier findest du folgende Inhalte
Formeln
Änderungsmaße
Um die Änderung von einem Wert in Bezug auf einen anderen Wert quantifizieren zu können, bedient man sich verschiedener Änderungsmaße. Man unterscheidet dabei zwischen Änderung und Änderungsrate
- Änderung: Beschreibt die Veränderung zwischen dem "vorher" und dem "nachher" Wert einer Größe
- Absolute Änderung
- Relative Änderung
- Prozentuelle Änderung
- Änderungsrate: Beschreibt das Verhältnis der Veränderung einer abhängigen Größe \(\Delta y\) zur Veränderung einer unabhängigen Größe \(\Delta x\)
- Mittlere Änderungsrate
- Momentane Änderungsrate
Absolute Änderung
Die absolute Änderung entspricht der Differenz aus "oberem Wert" minus "unterem Wert" vom betrachteten Intervall. Sie hat - im Unterschied zur relativen bzw. prozentuellen Änderung - eine physikalische Einheit.
\(\begin{array}{l} \Delta y = {y_2} - {y_1}\\ \Delta {y_n} = {y_{n + 1}} - {y_n}\\ \Delta f = f\left( b \right) - f\left( a \right) \end{array}\)
Relative Änderung
Die relative Änderung entspricht der absoluten Änderung „bezogen auf den“ oder „relativ zum“ Grundwert. Sie errechnet sich als der Quotient aus der absoluten Änderung und dem Grundwert. Die relative Änderung ist eine Dezimalzahl, die keine physikalische Einheit hat.
\(\begin{array}{l} \dfrac{{\Delta y}}{{{y_1}}} = \dfrac{{{y_2} - {y_1}}}{{y1}}\\ \dfrac{{\Delta {y_n}}}{{{y_n}}} = \dfrac{{{y_{n + 1}} - {y_n}}}{{{y_n}}}\\ \dfrac{{\Delta f}}{{{f_a}}} = \dfrac{{f\left( b \right) - f\left( a \right)}}{{f\left( a \right)}} \end{array}\)
Prozentuelle Änderung
Die prozentuale Änderung entspricht dem Quotienten aus der absoluten Änderung und dem Grundwert, multipliziert mit 100%. Die prozentuale Änderung ist daher eine relative Änderung in Prozentschreibweise ohne physikalische Einheit. Der Grundwert y1 ist zugleich der 100% Wert. Die prozentuale Änderung beschreibt in Prozent, um wie viel sich ein gegebener Grundwert verändert, also erhöht oder verringert, hat.
\(p = \dfrac{{{y_2} - {y_1}}}{{{y_1}}} \cdot 100\% \)
Beispiel:
Datenquelle:
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
- durchschnittliche Bevölkerung Österreichs im Jahr 2000: 8.011.566 EW
- durchschnittliche Bevölkerung Österreichs im Jahr 2019: 8.877.637 EW
absolute Änderung der Bevölkerung im Betrachtungszeitraum:
\(E{W_{2019}} - E{W_{2000}} = 8.877.637{\text{ EW}} - 8.011.566{\text{ EW}} = 866.071{\text{ EW}}\)
→ Die Bevölkerung ist im Betrachtungszeitraum um 866.071 Einwohner gestiegen
relative Änderung der Bevölkerung im Betrachtungszeitraum:
\(\dfrac{{E{W_{2019}} - E{W_{2000}}}}{{E{W_{2000}}}} = \dfrac{{8.877.637 - 8.011.566}}{{8.011.566}} = \dfrac{{866.071}}{{8.011.566}} = 0,1081\)
→ Die Bevölkerung ist im Betrachtungszeitraum auf das 1,1081 fache gestiegen
prozentuale Änderung der Bevölkerung im Betrachtungszeitraum:
\(\dfrac{{E{W_{2019}} - E{W_{2000}}}}{{E{W_{2000}}}} \cdot 100\% = \dfrac{{866.071}}{{8.011.566}} \cdot 100\% = 10,81\% \)
→ Die Bevölkerung ist im Betrachtungszeitraum um 10,81 % gestiegen
Differenzengleichungen
Eine Differenzengleichung ist eine rekursive Bildungsvorschrift für eine Zahlenfolge. Mit Hilfe der Differenzengleichung kann man aus der n-ten Zahl xn der Folge die darauf folgende n+1 Zahl xn+1 der Folge ermitteln. x0 ist der Startwert der Folge. n muss eine natürliche Zahl (1,2,3…) sein
Die lineare Differenzengleichung entspricht einer arithmetischen Folge. Dabei liegt zwischen dem n-ten und den n+1-ten Glied ein fester Betrag k.
\(\eqalign{ & {a_{n + 1}} = {a_n} \pm k........{\text{rekursive Darstellung}} \cr & {a_{n + 1}} - {a_n} = \pm k......{\text{Differenzendarstellung}} \cr} \)
Beispiel Startwert 100, je Zeitintervall kommen 5 Einheiten dazu
\(\eqalign{ & {a_0} = 100 \cr & {a_1} = {a_0} + k = 100 + 5 = 105 \cr & {a_2} = {a_1} + k = 105 + 5 = 110 \cr} \)
Die exponentielle Differenzengleichung entspricht einer geometrischen Folge. Dabei liegt zwischen dem n-ten und den n+1-ten Glied ein fester Prozentsatz bzw. ein gleicher relativer Anteil.
\(\eqalign{ & {a_{n + 1}} = {a_n} \cdot q{\text{ mit q}} = \dfrac{{{a_{n + 1}}}}{{{a_n}}}{\text{ = 1}} \pm \dfrac{p}{{100}}.....{\text{rekursive Darstellung}} \cr & {a_{n + 1}} - {a_n} = {a_n} \cdot \left( {q - 1} \right)..........{\text{Differenzendarstellung}} \cr} \)
Beispiel: Startwert 100, sinkt je Zeitintervall um 5%
\(\eqalign{ & {a_0} = 100\,\,\,\,\,\,\,\,5\% \buildrel \wedge \over = 1 - \frac{5}{{100}} = 0,95 \cr & {a_1} = 100 \cdot 0,95 = 95 \cr & {a_2} = 95 \cdot 0,95 = 90,25 \cr} \)
Mittlere Änderungsrate bzw. Differenzenquotient
Der Differenzenquotient gibt die mittlere Änderungsrate in einem Intervall an und entspricht der Steigung einer Sekante durch zwei Punkte am Graph der Funktion \(f\). Die mittlere Änderungsrate errechnet sich aus dem Quotienten von der Differenz der Funktionswerte (f(b), f(a)) zur Differenz der Argumente (b, a).
\(\begin{array}{l} {k_{{\rm{Sekante}}}} = \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\\ {k_{{\rm{Sekante}}}} = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \end{array}\)
\(\dfrac{{\Delta y}}{{\Delta t}} = \dfrac{{y\left( {{t_2}} \right) - y\left( {{t_1}} \right)}}{{{t_2} - {t_1}}};\)
Während eine lineare Funktion (deren Graph eine Gerade ist) eine konstante Steigung k besitzt, hat eine Funktion höheren Grades (deren Graph eine "Kurve" ist) eine Steigung, die vom jeweiligen Punkt auf dem Graphen abhängt.
Der Differenzenquotient ermöglicht es, die Steigung einer nicht linearen Funktion für einen bestimmten Abschnitt, der durch 2 Punkte \({f\left( {{x_0}} \right)}\) und \({f\left( {{x_0} + \Delta x} \right)}\) auf dem Graphen definiert ist, zu berechnen. Dabei entspricht die jeweilige Steigung der Funktion der zugehörigen Steigung der Geraden (=Sekante) durch die beiden Punkte. Man spricht auch von der "mittleren Anstiegsrate"
Der Differenzenquotient ist leider nur eine Näherung für die Steigung der Funktion. Erst der Differentialquotient (als Grenzwert des Differenzenquotienten mit \(\vartriangle x \to 0\)) liefert dann eine exakte Berechnung, bei der die Sekante in eine Tangente übergeht, da der Abstand zwischen den beiden Punkten gegen Null geht.
Momentane Änderungsrate bzw. Differentialquotient
Der Differentialquotient gibt die momentane Änderungsrate im Punkt x0 an und entspricht der Steigung k der Tangente an die Funktion \(f\) . Er errechnet sich aus der 1. Ableitung \(f'\) der Funktion \(f\). Der Differentialquotient ist definiert als der Grenzwert (Limes) vom Differenzenquotient.
\(\eqalign{ & f'({x_0}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} = \dfrac{{dy}}{{dx}} \cr & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{{x_1} \to {x_0}} \dfrac{{f\left( {{x_1}} \right) - f\left( {{x_0}} \right)}}{{{x_1} - {x_0}}} \cr}\)
Grafisch lässt sich Differenzierbarkeit so deuten, dass an den Graphen der Funktion f(x) an jeder Stelle genau (!) eine Tangente existiert.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 4011
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohmilchproduktion - Aufgabe A_252
Teil b
In der nachstehenden Tabelle ist die durchschnittliche Jahresmilchleistung pro Kuh in Kilogramm (kg) für einige ausgewählte europäische Länder im Jahr 2012 angegeben.
Land | durchschnittliche Jahresmilchleistung pro Kuh in kg |
Deutschland | 7 280 |
Dänemark | 8 701 |
Italien | 5 650 |
Österreich | 6 418 |
Rumänien | 3 429 |
Slowakei | 6 501 |
Tschechien | 7 705 |
Ungarn | 7 184 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, um wie viel Prozent die durchschnittliche Jahresmilchleistung pro Kuh in Dänemark höher als jene in Rumänien war.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Diese Daten sind, mit Ausnahme der durchschnittlichen Jahresmilchleistung pro Kuh in Tschechien, im nachstehenden Diagramm dargestellt.
Zeichnen Sie im folgenden Diagramm die fehlende Säule für Tschechien ein.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4071
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil c
Die nachstehende Tabelle zeigt die Anzahl der Hausbesuche pro Jahr durch mobile Dienste im Rahmen der Altenpflege in Oberösterreich sowie deren prozentualen Anstieg jeweils im Vergleich zur Anzahl 2 Jahre davor.
Jahr |
Anzahl der Hausbesuche pro Jahr |
prozentualer Anstieg (gerundet) |
1994 | 498 086 | |
1996 | 589 168 | 18,3 % |
1998 | 802 146 | 36,1 % |
2000 | 1 017 793 | 26,9 % |
2002 | 1 176 665 | 15,6 % |
2004 | 1 360 543 | 15,6 % |
Der prozentuale Anstieg der Anzahl der Hausbesuche pro Jahr betrug sowohl von 2000 auf 2002 als auch von 2002 auf 2004 jeweils rund 15,6 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie in Worten, warum sich die absolute Änderung der Anzahl der Hausbesuche pro Jahr von 2000 auf 2002 von jener von 2002 auf 2004 unterscheidet, obwohl die prozentualen Anstiege in den jeweiligen Zeitintervallen gleich sind.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der Berechnung \(\dfrac{{1360543 - 498086}}{{2004 - 1994}} \approx 86246\) im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 4175
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mathematik-Olympiade - A_066
Die Mathematik-Olympiade ist ein bekannter Wettbewerb für Schüler/innen.
Teil c
Die nachstehende Häufigkeitstabelle zeigt die erreichten Punkteanzahlen der 40 Teilnehmer/innen des Bundeswettbewerbs der Mathematik-Olympiade im Jahr 2016.
erreichte Punkteanzahl | Anzahl der Teilnehmer(innen |
0-8 | 7 |
9-16 | 22 |
17-24 | 9 |
25-32 | 2 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viel Prozent der Teilnehmer/innen mindestens 17 Punkte erreicht haben.
[1 Punkt]
Aufgabe 4238
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rund um die Heizung - Aufgabe A_140
Teil a
Die nachstehende Abbildung zeigt einen waagrecht gelagerten, zylinderförmigen Öltank in der Ansicht von vorne. Der Punkt M ist der Mittelpunkt des dargestellten Kreises mit dem Radius r .
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von r und α eine Formel zur Berechnung der Füllhöhe h.
h =
[1 Punkt]
Für das Volumen V eines 2 m langen Öltanks gilt:
\(V = {r^2} \cdot \pi \cdot 2\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, um wie viel Prozent das Volumen größer wäre, wenn der Radius um 20 % größer wäre.
[1 Punkt]
Aufgabe 4501
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Attersee - Aufgabe B_524
Teil b
Der pH-Wert von Wasser wird mithilfe der Konzentration c der Wasserstoffionen berechnet. Auf der nachstehenden logarithmischen Skala ist die Konzentration c1 einer Wasserprobe aus dem Attersee eingetragen.
1. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie den Wert von c1 ab.
c1 = mol/L
[0 / 1 P.]
Für den Zusammenhang zwischen der Konzentration c und dem pH-Wert gilt: pH = –lg(c).
Eine andere Wasserprobe wird untersucht. Das Messgerät zeigt dabei einen pH-Wert von 8,0 an. Aufgrund der Messungenauigkeit muss der tatsächliche pH-Wert der Wasserprobe zwischen 7,9 und 8,1 liegen. Die Konzentration, die einem pH-Wert von 8,0 entspricht, wird mit c2 bezeichnet.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viel Prozent die Konzentration der Wasserprobe höchstens unter bzw. über der Konzentration c2 liegt.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen