Satz des Pythagoras
In jedem rechtwinkeligen Dreieck, ist die Summe der Flächeninhalte der Quadrate über den beiden Katheten, gleich dem Flächeninhalt des Quadrats über der Hypotenuse.
Hier findest du folgende Inhalte
Formeln
Rechtwinkeliges Dreieck
Das rechtwinkelige Dreieck ist ein Dreieck mit einem rechten Winkel. Dem rechten Winkel gegenüber liegt die längste Seite, die Hypotenuse. Die beiden an den rechten Winkel angrenzenden Seiten sind kürzer und heißen Katheten.
Bezeichnungen im rechtwinkeligen Dreieck
- Die Hypotenuse wird durch die Höhenlinie in 2 Hypotenusenabschnitte p und q geteilt.
- Die Satzgruppe des Pythagoras, bestehend aus dem Satz des Pythagoras, dem Katheten- und dem Höhensatz des Euklid beschreiben die jeweiligen Zusammenhänge.
- Für jeden der beiden spitzen Winkel gilt, dass an ihm eine Kathete anliegt - die Ankathete und dass ihm die andere Kathete gegenüber liegt - die Gegenkathete
- Wichtig ist, dass obige Sätze nur in Dreiecken MIT rechtem Winkel gelten. Der Satz des Pythagoras ist ein Spezialfall vom Kosinus-Satz. Letzterer gilt auch in Dreiecken OHNE rechtem Winkel.
a | Gegenkathete, liegt gegenüber von \(\alpha\) |
b | Ankathete, liegt \(\alpha\) an |
c | Hypotenuse, die längste Seite, liegt gegenüber vom rechten Winkel |
\(\alpha\) | Winkel, der von Ankathete und Hypotenuse eingeschlossen wird |
p, q | Hypotenusenabschnitte |
Hypotenuse
Die Hypotenuse ist die längste Seite im rechtwinkeligen Dreieck. Sie liegt gegenüber vom rechten Winkel.
Katheten
Die Katheten sind die beiden kürzeren Seiten im rechtwinkeligen Dreieck. Sie liegen links und rechts vom rechten Winkel
Innenwinkel im rechtwinkeligen Dreieck
Die Summe aller 3 Innenwinkel im rechtwinkeligen Dreieck beträgt 180°
\(\alpha + \beta = 90^\circ = \gamma \)
Umfang vom rechtwinkeligen Dreieck
Der Umfang eines jeden Dreiecks ergibt sich aus der Summe der drei Seitenlängen
\(U = a + b + c\)
Flächeninhalt vom rechtwinkeligen Dreieck
Der Flächeninhalt eines jeden Dreiecks errechnet sich aus "Seite mal zugehöriger Höhe halbe"
\(A = \dfrac{{a \cdot b}}{2} = a \cdot \dfrac{{{h_a}}}{2} = b \cdot \dfrac{{{h_b}}}{2} = c \cdot \dfrac{{{h_c}}}{2}\)
Illustration vom rechtwinkeligen Dreieck
Satz des Pythagoras
Der Satz vom Pythagoras besagt, dass in jedem rechtwinkeligen Dreieck die Summe der Flächeninhalte der Quadrate über den beiden Katheten a,b, gleich ist dem Flächeninhalt des Quadrats über der Hypotenuse c. Nochmals laut und deutlich: Der Satz des Pythagoras gilt nur im rechtwinkeligen Dreieck, nicht im allgemeinen Dreieck! Der Satz des Pythagoras ist ein Spezialfall vom Kosinussatz, der auch für allgemeine Dreiecke gilt.
\({a^2} + {b^2} = {c^2}\)
Der Satz des Pythagoras stellt eine Beziehung zwischen den drei Seiten eines rechtwinkeligen Dreieck her, die es ganz einfach erlaubt aus je zwei Seiten die dritte Seite zu errechnen.
\(\eqalign{ & a = \sqrt {{c^2} - {b^2}} \cr & b = \sqrt {{c^2} - {a^2}} \cr & c = \sqrt {{a^2} + {b^2}} \cr} \)
Illustration vom Satz des Pythagoras
Beispiel
Gegeben sei von einem rechtwinkeligen Dreieck die Hypotenuse c=5 und eine Kathete mit b=4 Längeneinheiten.
Gesucht ist die Länge der fehlenden Kathete a
\(a = \sqrt {{c^2} - {b^2}} = \sqrt {{5^2} - {4^2}} = \sqrt {25 - 16} = \sqrt 9 = 3\)
Kathetensatz des Euklid
Der Kathetensatz des Euklid besagt, dass in jedem rechtwinkeligen Dreieck der Flächeninhalt des Quadrats über jeder der beiden Katheten a bzw. b gleich ist dem Flächeninhalt des Rechtecks aus der Hypotenuse c und dem der jeweiligen Kathete anliegenden Hypotenusenabschnitt p bzw. q.
\(\eqalign{ & {a^2} = c \cdot q \cr & {b^2} = c \cdot p \cr} \)
Illustration vom Kathetensatz des Euklid
Höhensatz des Euklid
Der Höhensatz des Euklid besagt, dass in jedem rechtwinkeligen Dreieck der Flächeninhalt des Quadrats über der Höhe hc gleich ist dem Flächeninhalt des Rechtecks, aus den beiden Hypotenusenabschnitten p und q.
Hypotenusenabschnitt
Zeichnet man im rechtwinkeligen Dreieck die Höhe auf die Hypotenuse ein, so teilt der Fußpunkt der Höhe die Hypotenuse in die beiden Hypotenusenabschnitte, die üblicher Weise mit p und q bezeichnet werden
\({h_c}^2 = p \cdot q;\)
Illustration vom Höhensatz des Euklid
Beispiel:
Bevor ein Transporter durch einen Tunnel mit Gegenverkehr fährt prüft der Fahrer ob sich die Durchfahrt mit der Höhe überhaupt ausgeht. Er schätzt den Gehsteig links und rechts auf je 1m Breite und die Fahrbahn auf 6m Breite. Aus den Wagenpapieren entnimmt er die Höhe seines Transporters zu 2,477m. Er beabsichtigt so weit wie möglich rechts, also direkt neben dem Gehsteig zu fahren.
Lösungsweg:
Für seine Berechnung zieht der Fahrer den Höhensatz des Euklid heran:
\(\eqalign{ & {h_c}^2 = p \cdot q \cr & {h_c} = \sqrt {p \cdot q} = \sqrt {7 \cdot 1} = 2,65m > 2,477m \cr} \)
Die Durchfahrt sollte auch bei Gegenverkehr möglich sein
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 4070
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil b
Der Aufzug eines Pflegeheims hat eine rechteckige Grundfläche mit einer Länge von 4 m und einer Breite von 2,8 m. Ein Pflegebett fährt auf beweglichen Rollen und hat die Augenmaße 2,4 m × 1,1 m (siehe nachstehende nicht maßstabsgetreue Abbildung).
Abbildung: Aufzug-Innenraum von oben gesehen
1. Teilaufgabe - Bearbeitungszeit 5:40
Überprüfen Sie nachweislich, ob der Aufzug breit genug ist, damit das Bett – wie oben skizziert – um 180° gedreht werden kann.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1057
AHS - 1_057 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren im Dreieck
Ein Dreieck ABC ist rechtwinklig mit der Hypotenuse AB.
- Aussage 1: \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {AC} } \right|\)
- Aussage 2: \({\overrightarrow {AB} ^2} = {\overrightarrow {AC} ^2} + {\overrightarrow {BC} ^2}\)
- Aussage 3: \(\overrightarrow {AC} = \overrightarrow {BC}\)
- Aussage 4: \(\overrightarrow {AB} = \overrightarrow {BC} - \overrightarrow {AC} \)
- Aussage 5: \(\overrightarrow {AC} \cdot \overrightarrow {BC} = 0\)
Aufgabenstellung:
Welche der folgenden Aussagen sind jedenfalls richtig? Kreuzen Sie die beiden entsprechenden Aussagen an!
Aufgabe 1220
AHS - 1_220 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Raumdiagonale beim Würfel
Gegeben ist ein Würfel mit der Seitenlänge a
Aufgabenstellung:
Berechnen Sie die Größe des Winkels φ zwischen einer Raumdiagonalen und einer Seitenflächendiagonalen eines Würfels!
Aufgabe 4399
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil a
In der nachstehenden Skizze wird der äußere Rand der Stahlkonstruktion näherungsweise durch einen Kreisbogen mit dem Mittelpunkt M und dem Radius r dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie aus a und h eine Formel zur Berechnung des Radius r.
r =
[1 Punkt]
Aufgabe 4484
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grundstücke - Aufgabe B_518
Teil a
In der nebenstehenden Abbildung ist ein dreieckiges Grundstück dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Begründen Sie mithilfe der gegebenen Seitenlängen, warum der Winkel α der größte Winkel des Dreiecks ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie mithilfe des Satzes von Pythagoras, dass α kein rechter Winkel ist.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Winkel α.
[0 / 1 P.]
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Flächeninhalt dieses Grundstücks.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.