Mathematik Zentralmatura BHS - Jänner 2023 - kostenlos vorgerechnet
Die Beispiele aus diesem BHS Maturatermin werden vorgerechnet und verständlich erklärt.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 5667
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kaffeekapseln – Aufgabe A_325
Teil a
Der Kaffeevollautomat Divo kostet € 800. Die verwendeten Kaffeebohnen kosten 18 €/kg. Für eine Tasse Kaffee werden 10 g Kaffeebohnen benötigt. Die Kosten für x Tassen Kaffee setzen sich aus den Kosten für den Kaffeevollautomaten und den Kosten für die Kaffeebohnen zusammen und können durch die Funktion K1 beschrieben werden.
- x ... Anzahl der Tassen Kaffee
- K1(x) ... Kosten fur x Tassen Kaffee in Euro
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der Funktion K1 auf.
[0 / 1 P.]
In einem kleinen Büro wird die Kaffeemaschine Kapsello verwendet. Die Kosten für x Tassen Kaffee können durch die Funktion K2 beschrieben werden.
\({K_2}\left( x \right) = 0,38 \cdot x + 160\)
- x ... Anzahl der Tassen Kaffee
- K2(x) ... Kosten für x Tassen Kaffee in Euro
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diejenige Anzahl an Tassen Kaffee, ab der die Verwendung des Kaffeevollautomaten
Divo günstiger als die Verwendung der Kaffeemaschine Kapsello wäre.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5668
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kaffeekapseln – Aufgabe A_325
Teil b
In einer Dose liegen insgesamt 12 Kaffeekapseln. Es gibt nur grüne Kaffeekapseln (G) und lilafarbene Kaffeekapseln (L). Peter nimmt zufällig und ohne Zurücklegen 2 Kaffeekapseln aus dieser Dose.
1. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie das nachstehende Baumdiagramm so, dass es den beschriebenen Sachverhalt wiedergibt.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass Peter mindestens 1 grüne Kaffeekapsel aus der Dose nimmt.
[0 / 1 P.]
Aufgabe 5669
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kaffeekapseln – Aufgabe A_325
Teil c
Ein großer Betrieb produziert jährlich 2 Milliarden Kaffeekapseln. Für die Produktion einer Kaffeekapsel wird 1 g Aluminium benötigt. Die Dichte von Aluminium betragt 2,7 g/cm3. Die Masse m ist das Produkt aus Dichte ϱ und Volumen V, also
\(m = \rho \cdot V\)
Stellen Sie sich vor, dass die jährlich benötigte Menge Aluminium in einen Würfel gegossen wird.
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Kantenlänge dieses Würfels in Zentimetern.
[0 / 1 / 2 P.]
Aufgabe 5670
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testfahrten – Aufgabe A_326
Auf drei Teststrecken werden Testfahrten mit Autos durchgeführt.
Teil a
Eine bestimmte Testfahrt auf der ersten Teststrecke kann modellhaft durch die nachstehend dargestellte Weg-Zeit-Funktion s1 beschrieben werden.
- t ... Zeit in s
- s1(t) ... zurückgelegter Weg zur Zeit t in m
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die mittlere Geschwindigkeit des Autos auf den letzten 70 m der Testfahrt.
[0 / 1 P.]
Die Weg-Zeit-Funktion s1 setzt sich aus einer linearen Funktion (im Zeitintervall [0; 5]) und einer quadratischen Funktion (im Zeitintervall [5; 10]) zusammen (siehe obige Abbildung).
- An der Stelle t = 5 haben die lineare Funktion und die quadratische Funktion die gleiche Steigung.
- An der Stelle t = 10 hat die quadratische Funktion die Steigung 0.
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der zugehörigen Geschwindigkeit-Zeit-Funktion v1 ein.
[0 / 1 P.]
Aufgabe 5671
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testfahrten – Aufgabe A_326
Auf drei Teststrecken werden Testfahrten mit Autos durchgeführt.
Teil b
Für eine bestimmte 30 s lange Testfahrt auf der zweiten Teststrecke gilt:
- Zu Beginn (t = 0) steht das Auto still.
- Im Zeitintervall [0; 10] nimmt die Geschwindigkeit bis 25 m/s mit konstanter Beschleunigung zu.
- Im Zeitintervall [10; 30] nimmt die Geschwindigkeit mit konstanter Beschleunigung ab.
- Am Ende (t = 30) steht das Auto wieder still.
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der zugehörigen Geschwindigkeit-Zeit-Funktion v2 im Zeitintervall [0; 30] ein.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5672
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testfahrten – Aufgabe A_326
Auf drei Teststrecken werden Testfahrten mit Autos durchgeführt.
Teil c
Auf der dritten Teststrecke wurden unter anderem folgende Geschwindigkeiten in m/s gemessen:
18 22 24 30
1. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Aussagen jeweils die zutreffende Auswirkung auf diese Datenliste aus A bis D zu.
[0 / 1 P.]
- Aussage 1: Zu dieser Datenliste wird der Wert 32 hinzugefügt.
- Aussage 2: Zu dieser Datenliste wird der Wert 23 hinzugefügt.
- Datenliste A: Das arithmetische Mittel wird größer.
- Datenliste B: Der Median wird kleiner.
- Datenliste C: Der Median bleibt unverändert.
- Datenliste D: Die Spannweite wird kleiner.
Aufgabe 5673
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Feinstaub – Aufgabe A_327
Feinstaub in der Atemluft stellt ein Gesundheitsrisiko dar.
Teil a
An einer Messstelle in Graz wurde an einem bestimmten Tag von 5:00 Uhr bis 13:00 Uhr die Feinstaubbelastung gemessen. Die Funktion f beschreibt näherungsweise die Feinstaubbelastung
in Abhängigkeit von der Zeit.
\(f\left( t \right) = - 1,4 \cdot {t^2} + 11 \cdot t + 47{\text{ mit }}0 \leqslant t \leqslant 8\)
- t ... Zeit in h mit t = 0 für 5:00 Uhr
- f(t) ... Feinstaubbelastung zur Zeit t in μg/m3
1. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung im gegebenen Sachzusammenhang.
Es gilt:
\(\eqalign{
& {t_1} = 0{\text{h}} \cr
& {{\text{t}}_2} = 4{\text{h}} \cr
& \dfrac{{f\left( {{t_2}} \right) - f\left( {{t_1}} \right)}}{{{t_2} - {t_1}}} = 5,4 \cr} \)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie diejenige Uhrzeit, zu der f‘(t) =–10 gilt.
[0 / 1 P.]
Aufgabe 5674
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Feinstaub – Aufgabe A_327
Feinstaub in der Atemluft stellt ein Gesundheitsrisiko dar.
Teil b
Die Feinstaubbelastung durch den Straßenverkehr wird in 3 Kategorien von Verursachern unterteilt: PKW-Verkehr, LKW-Transitverkehr und sonstiger LKW-Verkehr. Das nachstehende Kreisdiagramm soll die Feinstaubbelastung durch den Straßenverkehr darstellen.
Die Feinstaubbelastung durch den LKW-Transitverkehr ist doppelt so hoch wie die Feinstaubbelastung durch den sonstigen LKW-Verkehr.
1. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie das obige Kreisdiagramm so, dass es den beschriebenen Sachverhalt wiedergibt.
[0 / 1 P.]
Aufgabe 5675
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Feinstaub – Aufgabe A_327
Feinstaub in der Atemluft stellt ein Gesundheitsrisiko dar.
Teil c
Es wurden Messwerte der Feinstaubbelastung für einige Messstationen ausgewertet. Diese Messwerte sollen im unten stehenden Diagramm als Boxplot veranschaulicht werden. Das Minimum und der Median der Messwerte sind bereits eingezeichnet.
Weiters gilt:
- 3. Quartil (q3): 59 μg/m3
- Spannweite: 49 μg/m3
- Interquartilsabstand: 26 μg/m3
1. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie den Boxplot im obigen Diagramm.
[0 / 1 P.]
Der Messwert einer bestimmten Messstation mit einer besonders hohen Feinstaubbelastung wurde bei der Erstellung des Boxplots nicht berücksichtigt. Dieser Messwert ist um 134 % größer als der im obigen Diagramm eingezeichnete Median.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie diesen Messwert.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5676
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gartensauna – Aufgabe A_328
Teil a
In der nachstehenden Abbildung ist die Grundfläche einer Gartensauna in der Ansicht von oben modellhaft dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Weisen Sie rechnerisch nach, dass der Winkel γ ein rechter Winkel ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der obigen Abbildung die Strecke a ein, deren Länge mit dem nachstehenden Ausdruck berechnet werden kann.
\(a = 1,95 \cdot \sin \left( \alpha \right)\)
Aufgabe 5677
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gartensauna – Aufgabe A_328
Teil b
Die zeitliche Entwicklung der Lufttemperatur beim Aufheizen einer bestimmten Gartensauna kann modellhaft durch die Funktion T beschrieben werden.
\(T\left( t \right) = 85 - 75 \cdot {0,95^t}\)
- t ... Zeit ab dem Beginn des Aufheizens in min
- T(t) ... Lufttemperatur in der Gartensauna zur Zeit t in °C
1. Teilaufgabe - Bearbeitungszeit 05:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
[0 / 1 P.]
Die Lufttemperatur in der Gartensauna betragt zu Beginn des Aufheizens ___1___ und nähert sich einer maximalen Lufttemperatur von ___2___ an.
- Satzteil 1_1: 0°C
- Satzteil 1_2: 1°C
- Satzteil 1_3: 10°C
- Satzteil 2_1: 75°C
- Satzteil 2_2: 85°C
- Satzteil 2_3: 95°C
Aufgabe 5678
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gartensauna – Aufgabe A_328
Teil c
In der unten stehenden Abbildung ist der Querschnitt einer Gartensauna dargestellt. Die obere Begrenzungslinie des Daches wird durch den Graphen der Funktion h beschrieben.
\(\eqalign{ & h\left( x \right) = - 0,0207 \cdot {x^4} + 0,265 \cdot {x^3} - 1,14 \cdot {x^2} + 1,8 \cdot x + 1,54 \cr & {\text{mit }}0 \leqslant x \leqslant 6,2 \cr} \)
- x ... horizontale Entfernung vom linken Dachrand in m
- h(x) ... Höhe über dem waagrechten Boden an der Stelle x in m
An der Stelle xp gilt:
\(h'\left( {{x_P}} \right) = 0{\text{ und }}h''\left( {{x_P}} \right) > 0\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Stelle xP.
[0 / 1 P.]