BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_W_4.1
Bei Aufgabenstellungen in wirtschaftlichen Kontexten Kosten-, Nachfrage-, Erlös- und Gewinnfunktionen mithilfe von Polynomfunktionen modellieren
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4046
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lampenproduktion - Aufgabe B_419
Teil a
Ein Unternehmen produziert verschiedene Lampen. In der nachstehenden Abbildung ist der Graph der Stückkostenfunktion \(\overline K \) der Leuchte Credas dargestellt.
Die zugehörige Grenzkostenfunktion K′ ist gegeben durch: \(K'\left( x \right) = 0,5 \cdot x + 5\)
mit
x | Anzahl der produzierten ME |
K‘(x) | Grenzkosten bei x produzierten ME in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Grenzkostenfunktion K′ in der obigen Abbildung ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie das Betriebsoptimum ab.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K.
[1 Punkt]
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Fixkosten.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4105
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil a
Ein Unternehmen stellt Kunststoffrohre her, die zu einem fixen Preis verkauft werden. Im nachstehenden Diagramm ist der Graph der Kostenfunktion K für die Herstellung der Kunststoffrohre dargestellt.
Der Break-even-Point liegt bei einer Produktion von 8 ME. Die Kosten betragen dabei 400 GE.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Erlösfunktion E im obigen Diagramm ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zugehörigen Marktpreis.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie in der nachstehenden Wertetabelle die fehlenden Werte für die zugehörige Gewinnfunktion G.
[1 Punkt]
x in ME | 0 | 8 | 16 |
G(x) in GE0 | 0 |
Aufgabe 4107
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil c
Ein anderes Unternehmen stellt Keramikrohre her. Von der quadratischen Erlösfunktion E ist für den Absatz von 10 ME bekannt:
- E(10) = 15
- E′(10) = –1,5
- E″(10) = –0,6
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage über den Erlös bei einem Absatz von 11 ME an.
[1 aus 5] [1 Punkt]
- Aussage 1: E(11)=13,2
- Aussage 2: E(11)=13,5
- Aussage 3: E(11)=14,1
- Aussage 4: E(11)=16,2
- Aussage 5: E(11)=16,5
Aufgabe 4108
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil d
Die Erlösfunktion E für Betonrohre ist gegeben durch:
\(E\left( x \right) = - 3,2 \cdot x \cdot \left( {x - 25} \right)\)
mit
x | Absatzmenge in ME |
E(x) | Erlös bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage.
[1 Punkt]
2 Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Höchstpreis.
[1 Punkt]
Aufgabe 4349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil a
In der nachstehenden Abbildung ist der Graph der Preisfunktion der Nachfrage p für Betonrohre des Modells A dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Preisfunktion der Nachfrage p.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von p im gegebenen Sachzusammenhang.
[1 Punkt]
Die Betonrohre des Modells A werden um € 32 pro Stuck verkauft.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Anzahl der nachgefragten Betonrohre des Modells A.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4350
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil b
Für Betonrohre des Modells B geht man von einer kubischen Gewinnfunktion G aus.
x | Absatzmenge in ME |
G(x) | Gewinn bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen jeweils die zutreffende Gleichung aus A bis D zu.
[2 zu 4] [1 Punkt]
- Aussage 1: Der Break-even-Point liegt bei 200 ME.
- Aussage 2: Das Gewinnmaximum liegt bei 200 ME.
- Gleichung A: G(0)=200
- Gleichung B: G(200)=0
- Gleichung C: G'(200)=0
- Gleichung D: G''(200)=0
Aufgabe 4351
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil c
Für Betonrohre des Modells C geht man von einer kubischen Kostenfunktion K aus.
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
x |
Produktionsmenge in ME |
K(x) |
Kosten bei der Produktionsmenge x in GE |
- Die Fixkosten betragen 150 GE.
- Bei einer Produktion von 20 ME ergeben sich Kosten von 530 GE.
- Bei einer Produktion von 10 ME ergeben sich Grenzkosten von 17 GE/ME.
- Bei einer Produktion von 30 ME ergeben sich Stückkosten von 22 GE/ME.
1. Teilaufgabe - Bearbeitungszeit 17:00
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten a, b, c und d.
[3 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie diese Koeffizienten.
[1 Punkt]
Aufgabe 4418
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil a
Die Kosten bei der Produktion des Fruchtsafts Mangomix können durch eine ertragsgesetzliche Kostenfunktion K beschrieben werden:
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + 105 \cdot x + 1215\)
x | Produktionsmenge in hl |
K(x) | Kosten bei der Produktionsmenge x in € |
Von der Kostenfunktion ist bekannt:
- I: Die Grenzkosten bei einer Produktionsmenge von 25 hl betragen 30 €/hl.
- II: K″(25) = 0
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, die die Bedingung I beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung der Zahl 25 in der Gleichung II im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koeffizienten a und b.
[1 Punkt]
Aufgabe 4421
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil d
Der Grenzgewinn für den Fruchtsaft Mangomix kann durch die Funktion G′ beschrieben werden:
\(G'\left( x \right) = - 0,12 \cdot {x^2} - 4 \cdot x + 220\)
x |
Absatzmenge in hl |
G'(x) | Grenzgewinn bei der Absatzmenge x in €/hl |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diejenige Absatzmenge, bei der der maximale Gewinn erzielt wird.
[1 Punkt]
Die Fixkosten betragen 1.215 €.
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Gewinnfunktion G unter Berücksichtigung der Fixkosten.
[1 Punkt]
Es soll derjenige Bereich für die Absatzmenge ermittelt werden, in dem der Gewinn mindestens 1.000 € betragt.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diesen Bereich.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4509
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Scheiben für PKWs - Aufgabe B_527
Ein Betrieb stellt Frontscheiben und Heckscheiben für PKWs her.
Teil a
In der nachstehenden Abbildung sind der Graph der Kostenfunktion K und der Graph der quadratischen Erlösfunktion E für Frontscheiben eines bestimmten Typs dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der quadratischen Erlösfunktion E auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage auf.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie aus der obigen Abbildung die Gewinnzone ab.
[ ; ]
[0 / 1 P.]
Aufgabe 4592
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parfumherstellung – Aufgabe B_556
In einem Betrieb wird Parfum hergestellt.
Teil a
Die Gesamtkosten für die Produktion des Parfums Desert können durch die ertragsgesetzliche Kostenfunktion K beschrieben werden. Für die zugehörige Grenzkostenfunktion K‘ gilt:
\(\eqalign{ & K'\left( x \right) = 0,15 \cdot {x^2} - 6 \cdot x + c{\text{ }} \cr & {\text{mit }}x \geqslant 0 \cr} \)
- x ... Produktionsmenge in ME
- K′(x) ... Grenzkosten bei der Produktionsmenge x in GE/ME
- c ... Parameter
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie, für welche Produktionsmengen ein progressiver Kostenverlauf vorliegt.
[0 / 1 P.]
Bei ertragsgesetzlichen Kostenfunktionen gilt folgende Bedingung:
Die Grenzkostenfunktion muss im gesamten Definitionsbereich positiv sein.
2. Teilaufgabe - Bearbeitungszeit 05:40
Weisen Sie nach, dass diese Bedingung nur für c > 60 erfüllt ist.
[0 / 1 P.]
Die Fixkosten bei der Produktion dieses Parfums betragen 250 GE.
Es gilt: c = 80
3. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der zugehörigen Kostenfunktion K auf.
[0 / 1 P.]
Aufgabe 5631
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Farben und Lacke – Aufgabe B_539
Ein Unternehmen stellt verschiedene Farben und Lacke her.
Teil c
Für einen bestimmten Kunstharzlack beträgt der Höchstpreis 60 €/L. Bei einem Preis von 20 €/L können 200 L dieses Lacks abgesetzt werden. Der Zusammenhang zwischen dem Preis und der Absatzmenge kann für diesen Lack durch die lineare Preis-Absatz-Funktion p beschrieben werden.
- x … Absatzmenge in L
- p(x) … Preis bei der Absatzmenge x in €/L
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der linearen Preis-Absatz-Funktion p auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung dieser Preis-Absatz-Funktion p im gegebenen Sachzusammenhang.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Sättigungsmenge.
[0 / 1 P.]