BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_W_4.4
Wirtschaftliche Grenzfunktionen als Ableitungsfunktionen modellieren, berechnen und interpretieren; Stammfunktionen von Grenzfunktionen ermitteln und den Zusammenhang der beiden Funktionen erklären
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4046
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lampenproduktion - Aufgabe B_419
Teil a
Ein Unternehmen produziert verschiedene Lampen. In der nachstehenden Abbildung ist der Graph der Stückkostenfunktion \(\overline K \) der Leuchte Credas dargestellt.
Die zugehörige Grenzkostenfunktion K′ ist gegeben durch: \(K'\left( x \right) = 0,5 \cdot x + 5\)
mit
x | Anzahl der produzierten ME |
K‘(x) | Grenzkosten bei x produzierten ME in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Grenzkostenfunktion K′ in der obigen Abbildung ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie das Betriebsoptimum ab.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K.
[1 Punkt]
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Fixkosten.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4106
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil b
Die Grenzkostenfunktion K′ für die Herstellung von Kunststoffrohren ist gegeben durch:
\(K'\left( x \right) = \dfrac{{15}}{{32}} \cdot {x^2} - \dfrac{{35}}{4} \cdot x + 60\)
x | produzierte Menge in ME |
K'(x) |
Grenzkosten bei der produzierten Menge x in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K mit K(16) = 600.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kostenkehre.
[1 Punkt
Aufgabe 4510
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Scheiben für PKWs - Aufgabe B_527
Ein Betrieb stellt Frontscheiben und Heckscheiben für PKWs her.
Teil b
Die variablen Kosten bei der Produktion von Heckscheiben eines bestimmten Typs können durch die Funktion Kv beschrieben werden.
\({K_v}\left( x \right) = 0,0029 \cdot {x^3} - 0,45 \cdot {x^2} + 24 \cdot x\)
x | produzierte Menge in ME |
Kv(x) |
variable Kosten bei der produzierten Menge x in GE |
Die Fixkosten betragen 450 GE.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die langfristige Preisuntergrenze.
[0 / 1 P.]
In der nebenstehenden Abbildung sind
- der Graph der Durchschnittskostenfunktion K,
- der Graph der Grenzkostenfunktion K′ und
- der Graph der variablen Durchschnittskostenfunktion Kv
dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie diejenige Größe an, die nicht aus der obigen Abbildung abgelesen werden kann.
[1 aus 5] [0 / 1 P.]
- Größe 1: Kostenkehre
- Größe 2: Fixkosten
- Größe 3: Betriebsminimum
- Größe 4: Betriebsoptimum
- Größe 5kurzfristige Preisuntergrenze
Die Preisfunktion der Nachfrage pN für Heckscheiben dieses Typs ist gegeben durch:
\({p_N}\left( x \right) = - 0,16 \cdot x + 30\)
x | nachgefragte Menge in ME |
pN(x) |
Preis bei der nachgefragten Menge x in GE/ME |
3. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie den Höchstpreis an.
[0 / 1 P.]
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Cournot’schen Preis.
[0 / 1 P.]
Aufgabe 5645
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rasenmähroboter – B_542
Immer öfter erledigen Rasenmähroboter die Mäharbeiten in Garten.
Teil c
Die Kosten für die Herstellung von Rasenmährobotern werden modellhaft durch die streng monoton steigende Kostenfunktion K beschrieben.
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d{\text{ mit }}a > 0;\,\,d > 0;\)
- x ... Produktionsmenge in ME
- K(x) ... Kosten bei der Produktionsmenge x in GE
1. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden angegebenen Funktionen jeweils den passenden Funktionsgraphen aus A bis D zu.
[0 / 1 P.]
- Funktion 1: Kostenfunktion K
- Funktion 2: Grenzkostenfunktion K′
- Funktionsgraph A:
Abbildung fehlt
- Funktionsgraph B
Abbildung fehlt
- Funktionsgraph C
Abbildung fehlt
- Funktionsgraph D
Abbildung fehlt
Aufgabe 5655
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Süßwarenproduktion – Aufgabe B_545
Ein Unternehmen produziert Süßwaren.
Teil b
Die Gesamtkosten bei der Produktion von Waffelschnitten können durch die lineare Kostenfunktion K beschrieben werden.
\(K\left( x \right) = a \cdot x + b\)
- x … Produktionsmenge in ME
- K(x) … Gesamtkosten bei der Produktionsmenge x in GE
In Abbildung 1 sind die Graphen der Grenzkostenfunktion K‘ und der Durchschnittskostenfunktion \(\overline K \) dargestellt.
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie die Steigung a der Kostenfunktion K an.
a = GE/ME
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in Abbildung 2 den Graphen der Kostenfunktion K ein.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.