Preisfunktion der Nachfrage
Hier findest du folgende Inhalte
Formeln
Preisfunktionen von Angebot bzw. Nachfrage
Die Preisfunktion beschreibt den erzielbaren Preis pro Stück. Der Preis pro Stück stellt dabei ein Gleichgewicht zwischen der nachgefragten und der angebotenen Menge dar, wobei dieser Ausgleich am besten in Märkten mit vollständiger Konkurrenz erfolgen kann. Der Preis ist dabei eine Bewertung in Geldeinheiten für die Knappheit eines Gutes. Anbieterseitig lenkt der Preis die produzierte Menge, nachfragerseitig lenkt der Preis die konsumierte Menge des Produkts.
\(P\left( x \right) = \dfrac{{E\left( x \right)}}{x}\)
- Die Preisfunktion der Nachfrage gibt den Zusammenhang zwischen dem Preis eines Gutes und der nachgefragten Menge an. Steigt die Nachfrage, so wird das Gut zunächst seltener und es steigt der Preis.
\({p_N}\left( x \right) = \dfrac{{E\left( x \right)}}{x}\) - Die Preisfunktion des Angebots gibt den Zusammenhang zwischen dem Preis eines Gutes und der angebotenen Menge an. Steigt der Preis so wird von den Anbietern mehr von dem Gut produziert wodurch größere Mengen verfügbar werden und der Preis sinkt.
- Im Marktgleichgewicht stimmen die angebotene und die nachgefragte Menge überein.
Preisfunktion der Nachfrage bzw. Preis-Absatzfunktion
Die Preisfunktion der Nachfrage gibt den Zusammenhang zwischen dem Preis p eines Gutes und der nachgefragten (=abgesetzten) Menge xN an.
\({p_N} = {p_N}\left( x \right)\) ... Preis pro Mengeneinheit, in Abhängigkeit von der nachgefragten Menge
Im Allgemeinen ist die Preisfunktion der Nachfrage streng monoton fallend. (Hoher Preis → geringe Nachfrage)
- Der Prohibitivpreis bzw. Höchstpreis pH ist jener Preis, bei dem die nachgefragte Menge Null wird \({p_N}\left( {x = 0} \right) = {p_H}\), weil niemand mehr bereit ist, zu einem so hohen Preis eine Produktionseinheit zu kaufen. Der Prohibitivpreis heißt daher auch Höchst- oder Maximalpreis.
- Die Sättigungsmenge xS ist jene Menge, wo auch zum Preis Null nicht mehr Produkteinheiten am Markt nachgefragt werden \({p_N}\left( {{x_S}} \right) = 0\), weil es keinen weiteren Bedarf gibt, selbst wenn das Produkt verschenkt wird. Grafisch handelt es sich um den Schnittpunkt der Preis-Absatzkurve mit der x bzw. Mengenachse. Die Sättigungsmenge ist also die Nullstelle der Preis-Absatz-Funktion. Nicht jede Preis-Absatzfunktion muss auch eine Nullstelle haben.
Nachfragefunktion
Die Nachfragefunktion ist die Inverse der Preis-Absatzfunktion.
\({x_N} = x_N\left( p \right)\) ... Menge in der ein Gut nachgefragt wird, in Abhängigkeit vom Preis
Die Funktion ist monoton fallend, denn ein tiefer Preis führt zu einer hohen Nachfrage und umgekehrt. In der Praxis hat die Nachfragefunktion Unstetigkeitsstellen, denn die Nachfrage ist bei einem Preis von 9,99 € mitunter aus psychologischen Gründen größer als bei einem Preis von 10,01 €, obwohl de facto kein Preisunterschied besteht.
Die nachfolgende Illustration veranschaulicht die Zusammenhänge p=p(x) bzw. von x=x(p) - es handelt sich ja um den selben Funktionsgraph:
Preiselastizität der Nachfrage
Die Preiselastizität der Nachfrage ist ein Maß (ein sogenanntes Reagibilitätsmaß) dafür, um wie viele Prozent sich die Nachfrage der Konsumenten ändert, wenn sich der Preis um einen bestimmten Prozentsatz ändert. Die Elastizität ist somit neben der relativen Änderungsrate und der momentanen Änderung (1. Ableitung) ein Maß dafür, wie sich eine Funktion innerhalb eines Intervalls ändert.
Die mathematische Definition im Falle einer differenzierbaren Nachfragefunktion lautet:
\(\varepsilon \left( x \right) = \dfrac{{{p_N}^\prime \left( x \right)}}{{{p_N}\left( x \right)}} \cdot x\)
Mikroökonomische Definition der Preiselastizität:
\({\varepsilon _N} = \dfrac{{\dfrac{{\Delta {x_N}}}{{{x_N}}}}}{{\dfrac{{\Delta p}}{p}}} = \dfrac{{{\text{relative Mengenänderung}}}}{{{\text{relative Preisänderung}}}}\)
Da die Nachfragefunktion \({p_N}\left( x \right)\) eine fallende Funktion, also k<0 ist, gilt
- die 1. Ableitung \({p_N}^\prime \left( x \right)\) ist negativ
- die Elastizität \(\varepsilon \left( x \right) < 0\) ist ebenfalls negativ, höchstens Null
In der nachfolgenden Übersicht verwenden wir daher nicht das negative \(\varepsilon \) sondern dessen Betrag \(\left| \varepsilon \right|\)
\(\left| \varepsilon \right| = 0\) | vollkommen unelastische Nachfrage | Eine Preisänderung von \( \pm x\% \) bewirkt keine Änderung der Nachfrage |
\(\left| \varepsilon \right| < 1\) | Preisunelastische Nachfrage | Eine Preisänderung von \( \pm x\% \) bewirkt eine unterproportionale Änderung der Nachfrage um \( \mp y\% \) mit x>y Eine Preissenkung führt zu einer Absatzerhöhung aber zu einer Gewinnreduktion Für den optimalen Gewinn ist eine Preiserhöhung notwendig |
\(\left| \varepsilon \right| = 1\) | proportional elastische Nachfrage | Eine Preisänderung von \( \pm x\% \) bewirkt eine Änderung der Nachfrage um \( \mp x\% \) Umsatzmaximaler Preis |
\(\left| \varepsilon \right| > 1\) | Preiselastische Nachfrage | Eine Preisänderung von \( \pm x\% \) bewirkt eine überproportionale Änderung der Nachfrage um \( \mp y\% \) mit x<y Eine Preissenkung führt zu einer Absatzerhöhung und Gewinnerhöhung |
\(\left| \varepsilon \right| = \infty \) | vollkommen elastische Nachfrage | Eine kleine Preisänderung bewirkt eine ganz erhebliche Änderung der Nachfrage |
Illustration zur Veranschaulichung von preiselastischer bzw. preisunelastischer Nachfrage
Beispiel:
Preiselastizität 1,5 → 1,5>1 → Preiselastische Nachfrage ⇔ überproportionale Änderung der Nachfrage
- Eine Preissteigerung um 10% bewirkt einen Absatzrückgang um \((10\% \cdot 1,5 = )15\% \)
- Eine Preissenkung um 10% bewirkt eine Absatzzuwachs um \((10\% \cdot 1,5 = )15\% \)
Preisfunktion des Angebots
Die Preisfunktion des Angebots gibt den Zusammenhang zwischen dem Preis p eines Gutes und der angebotenen Menge xA an
\({p_A} = {p_A}\left( x \right)\) ... Preis pro Mengeneinheit, in Abhängigkeit von der angebotenen Menge
Im allgemeinen ist die Preisfunktion des Angebots streng monoton steigend. (Hoher Preis → hohes Angebot)
Mindestpreis
Der Mindestpreis pMin ist jene Preisuntergrenze, bei der sich erstmals ein Anbieter findet um das Produkt auf den Markt zu bringen.
Angebotsfunktion
Die Angebotsfunktion gibt die Menge in der ein Gut angeboten wird in Abhängigkeit vom Preis an
\({x_A} = x_A\left( p \right)\) ... Menge in der ein Gut angeboten wird, in Abhängigkeit vom Preis
In der Regel handelt es sich um eine monoton steigende Funktion. Es erfordert einen bestimmten Mindestpreis, damit Anbieter anfangen ihre Produkte zu verkaufen. Der Mindestpreis ergibt sich aus den Herstellkosten HK und einer Vertriebsspanne VSP, die der Verkäufer erzielen will. Je höher der erzielbare Preis, umso mehr Anbieter bringen eine immer größere Menge auf den Markt. Zufolge des so entstehenden Überangebots reduziert sich der Preis wieder, da die Verbraucher nicht mehr entsprechend nachfragen und Anbieter wieder aus dem Markt aussteigen.
Illustration zum Auffinden des Marktgleichgewichts
Marktgleichgewicht
Im Marktgleichgewicht stimmen die angebotene und die nachgefragte Menge überein. Es gibt keine Über- und keine Unterversorgung.
\({p_A}\left( x \right) = {p_N}\left( x \right)\)
Gleichgewichtspreis
Der Gleichgewichtspreis ist jener Preis, bei dem die nachgefragte und die angebotene Menge auf einem vollkommenen Markt genau übereinstimmen. Es kommt zu keinem Nachfrage- oder Angebotsüberschuss.
Marktpreis ist gleich Gleichgewichtspreis
Die Nachfrager können genau jene Menge kaufen, die sie beim Gleichgewichtspreis kaufen wollen. Die Anbieter können genau jene Menge produzieren und verkaufen, die sie beim Gleichgewichtspreis verkaufen wollen. Es kommt zu keinem Nachfrage- oder Angebotsüberschuss.
Marktpreis ist ungleich Gleichgewichtspreis
Bei einem vom Gleichgewichtspreis abweichendem Preis gibt es entweder eine Übernachfrage (=Unterangebot) oder ein Überangebot.
- Preisobergrenze liegt über dem Gleichgewichtspreis → Überangebot
Es entsteht ein Überangebot am Markt. Die Preisobergrenze wirkt nicht als Schutz der Nachfrager, da sie weit über und nicht unter dem Gleichgewichtspreis liegt. Die Preisobergrenze wird als nicht bindend bezeichnet, wenn sie über dem Gleichgewichtspreis liegt.
Preisobergrenzen bzw. Höchstpreise dienen dem Schutz der Nachfrager vor zu hohen Preisen. Sie führen zu einem Nachfrageüberschuss und zu Warteschlangen vor den Geschäften, da die Produzenten keine wirtschaftliche Motivation haben, zu investieren oder mehr zu produzieren. Dies führt langfristig dazu, dass der Nachfrageüberschuss immer größer wird und immer mehr Konsumenten das begehrte Produkt mangels Angebot nicht mehr kaufen können.
- Preisobergrenze liegt unter dem Gleichgewichtspreis → Übernachfrage bzw. Unterangebot
Es entsteht ein Unterangebot am Markt.
Preisuntergrenzen bzw. Mindestpreise dienen dem Schutz der Anbieter vor Preisdumping durch den Mitbewerber und führen zu Angebotsüberschüssen. Die Preisobergrenze wird als bindend bezeichnet, wenn sie unter dem Gleichgewichtspreis liegt.
Eine Gegenmaßnahme ist die Kontingentierung, d.h. die Angebotsmenge wird durch einen Regulator beschränkt, sodass weniger Produkte auf den Markt kommen.
- Preisuntergrenze liegt über dem Gleichgewichtspreis → Angebotsüberschuss
Liegen etwa die Löhne über dem Gleichgewichtspreis, so bieten immer mehr Arbeitnehmer ihre Arbeitsleistung am Markt an. Auf Grund der hohen Löhne sind aber weniger Arbeitgeber als beim Gleichgewichtspreis (-lohn) bereit, so viele Arbeitnehmer einzustellen. Es kommt zu Arbeitern ohne Arbeit, also zu Arbeitslosigkeit.
- Preisuntergrenze liegt unter dem Gleichgewichtspreis → Unterangebot
Liegen etwa die Löhne unter dem Gleichgewichtspreis, so bieten immer weniger Arbeitnehmer ihre Arbeitsleistung am Markt an. Auf Grund der niederen Löhne sind immer mehr Arbeitgeber an zusätzlichen Arbeitnehmern interessiert, die sie am Arbeitsmarkt nicht finden, wodurch offene unbesetzte Stellen entstehen. Es gibt mehr freie Stellen, als zu dem niederen Lohn (=Preis) besetzt werden können.
Beispiel: Die Nachfrage- (Demand)- und Angebotsfunktionen (Supply) nach einer Dienstleistung sind gegeben durch:
\(\eqalign{ & {Q_D} = 1200 - 2p \cr & {Q_S} = 1100 + 2p \cr} \)
Wir formulieren die gegebenen Gleichungen so um, dass der Preis p eine Funktion der Menge x ist. Damit wird, so wie wir es gewohnt sind, der Preis auf der y-Achse und die Menge auf der x-Achse dargestellt.
\( \eqalign{ & {Q_D} = 1200 - 2p \to {p_D} = 600 - 0,5 \cdot x \cr & {Q_S} = 1100 + 2p \to {p_S} = - 550 + 0,5 \cdot x \cr} \)
Anmerkung: Würden wir diese Umformung nicht machen, käme natürlich das selbe Resultat heraus, es würden lediglich auf der x-Achse der Preis und auf der y-Achse die Menge dargestellt werden.
Nun setzen wir die beiden Gleichungen einander gleich, um die Gleichgewichtsmenge zu bestimmen:
\(\eqalign{ & 600 - 0,5 \cdot x = - 550 + 0,5 \cdot x \cr & 1150 = x \cr} \)
Im Preis, bei dem sich das Marktgleichgewicht einstellt, stimmen die angebotene Menge und die nachgefragte Menge überein. Diese Gleichgewichtsmenge kennen wir gemäß x=1150, daher bestimmen wir noch den Gleichgewichtspreis, indem wir in die Preis-Absatzkurve bzw. die Angebotsfunktion einsetzen. Es kommt jedes Mal der idente Gleichgewichtspreis von 25 GE heraus:
\(\eqalign{ & x = 1150 \cr & \cr & {p_D}\left( {x = 1150} \right) = 600 - 0,5 \cdot 1150 = 600 - 575 = 25 \cr & {p_S}\left( {x = 1150} \right) = - 550 + 0,5 \cdot 1150 = - 550 + 575 = 25 \cr & \cr & {p_D} = {p_S} = 25 \cr} \)
Bei einem Preis von 25 Geldeinheiten wird eine Menge von 1150 Dienstleistungseinheiten nachgefragt. Es gibt keine Über- oder Unterversorgung.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1861
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erlösfunktion
Für ein bestimmtes Produkt kann der Zusammenhang zwischen der nachgefragten Menge x und dem Nachfragepreis p(x) durch die nachstehend dargestellte lineare Funktion p modelliert werden.
- x ... nachgefragte Menge in Mengeneinheiten (ME), 0 ≤ x ≤ 12
- p(x) ... Nachfragepreis bei der Menge x in Geldeinheiten pro Mengeneinheit (GE/ME)
Für die Erlösfunktion E gilt: E(x) = p(x) ∙ x.
Aufgabenstellung:
Stellen Sie eine Funktionsgleichung von E auf.
E(x) =
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4108
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil d
Die Erlösfunktion E für Betonrohre ist gegeben durch:
\(E\left( x \right) = - 3,2 \cdot x \cdot \left( {x - 25} \right)\)
mit
x | Absatzmenge in ME |
E(x) | Erlös bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage.
[1 Punkt]
2 Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Höchstpreis.
[1 Punkt]
Aufgabe 4349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil a
In der nachstehenden Abbildung ist der Graph der Preisfunktion der Nachfrage p für Betonrohre des Modells A dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Preisfunktion der Nachfrage p.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von p im gegebenen Sachzusammenhang.
[1 Punkt]
Die Betonrohre des Modells A werden um € 32 pro Stuck verkauft.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Anzahl der nachgefragten Betonrohre des Modells A.
[1 Punkt]
Aufgabe 4499
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Martinigläser - Aufgabe B_523
Teil c
Beim Verkauf von Martinigläsern geht man von einem linearen Zusammenhang zwischen dem Preis in GE/ME und der Verkaufsmenge in ME aus. Bei einem Preis von 5,00 GE/ME können 100 ME verkauft werden. Sinkt der Preis um 1,50 GE/ME, können um 200 ME mehr verkauft werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der zugehörigen linearen Preisfunktion der Nachfrage pN auf.
[0 / 1 P.]
In der nachstehenden Abbildung sind der Graph der Erlösfunktion E und der Graph der Kostenfunktion K dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie diejenige Verkaufsmenge ab, bei der der Gewinn 250 GE beträgt.
ME
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Der Erlös bei einer Verkaufsmenge von 100 ME beträgt 500 GE.
- Aussage 2: Die Fixkosten betragen 200 GE.
- Aussage 3: Die Kostenfunktion K ist streng monoton steigend.
- Aussage 4: Für die untere Gewinngrenze xu gilt: E′(xu) = K′(xu).
- Aussage 5: Für die zugehörige Stückkostenfunktion K gilt: K(200) = 3.
Aufgabe 4509
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Scheiben für PKWs - Aufgabe B_527
Ein Betrieb stellt Frontscheiben und Heckscheiben für PKWs her.
Teil a
In der nachstehenden Abbildung sind der Graph der Kostenfunktion K und der Graph der quadratischen Erlösfunktion E für Frontscheiben eines bestimmten Typs dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der quadratischen Erlösfunktion E auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage auf.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie aus der obigen Abbildung die Gewinnzone ab.
[ ; ]
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.