Aufgabe derzeit in Ausarbeitung
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 1879
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bremsvorgang
Ein PKW fährt mit einer Geschwindigkeit von 30 m/s und soll mit einer Bremsung zum Stillstand gebracht werden. Seine Geschwindigkeit nimmt dabei pro Sekunde um b m/s ab. Mit t wird die Zeitdauer vom Beginn des Bremsvorgangs bis zum Stillstand des PKWs bezeichnet (t in s).
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Gleichung auf, die den Zusammenhang zwischen t und b beschreibt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1883
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Treppe
In der nachstehenden Abbildung ist eine Treppe mit der Stufenhöhe h (in cm), der Stufenlänge l (in cm) und dem Steigungswinkel φ dargestellt.
Es sollen folgende Bedingungen erfüllt sein:
- \(2 \cdot h + l = 63\)
- Die Stufenlänge l liegt im Intervall [21 cm; 36,5 cm].
Aufgabenstellung - Bearbeitungszeit 05:40
Ermitteln Sie den kleinstmöglichen und den größtmöglichen Steigungswinkel φ (in °), bei dem die oben genannten Bedingungen erfüllt sind.
- kleinstmöglicher Steigungswinkel φ: °
- größtmöglicher Steigungswinkel φ: °
[0 / ½ / 1 P.]
Aufgabe 1884
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wertepaare
Die nachstehende Abbildung zeigt den Graphen der quadratischen Funktion f. Die gekennzeichneten Punkte des Graphen haben ganzzahlige Koordinaten.
Aufgabenstellung - Bearbeitungszeit 05:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
Für ____1____ gilt f(x) ≤ 5; für x ∈ [3; 5] gilt ____2____ .
- Satzteil 1.1: \(x \in \left[ {1;5} \right]\)
- Satzteil 1.2: \(x \in \left[ {2;6} \right]\)
- Satzteil 1.3: \(x \in \left[ {3;7} \right]\)
- Satzteil 2.1: \(f\left( x \right) \in \left[ {1;2} \right]\)
- Satzteil 2.2: \(f\left( {x \in \left[ {0;1} \right]} \right)\)
- Satzteil 2.3: \(f\left( {x \in \left[ {2;5} \right]} \right)\)
Aufgabe 1885
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkte einer Geraden mit der x-Achse
Jede Gleichung der Form \(y = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}\) beschreibt eine Gerade in der Ebene.
Aufgabenstellung - Bearbeitungszeit 05:40
Geben Sie diejenigen Bedingungen an, die die Parameter k und d einer solchen Geraden auf jeden Fall erfüllen müssen, damit diese keinen Schnittpunkt mit der x-Achse hat.
- Bedingung für k:
- Bedingung für d:
[0 / ½ / 1 P.]
Aufgabe 1886
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flächeninhalt von Rechtecken
Die Funktion f ordnet der Breite x (mit x > 0) eines Rechtecks mit dem Flächeninhalt 26 cm2 die Länge f(x) zu (x, f(x) in cm).
Aufgabenstellung - Bearbeitungszeit 05:40
Stellen Sie eine Funktionsgleichung von f auf.
f(x) =
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1887
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grad einer Polynomfunktion
Nachstehend ist der Graph der Polynomfunktion f abgebildet. Außerhalb des dargestellten Bereichs hat f keine Null-, keine Extrem- und keine Wendestellen.
Aufgabenstellung - Bearbeitungszeit 05:40
Begründen Sie, warum der Grad von f mindestens 4 sein muss.
[0 / 1 P.]
Aufgabe 1888
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körperliche Leistungsfähigkeit
Im Rahmen einer Studie wird jährlich die körperliche Leistungsfähigkeit bestimmter Personen untersucht. Das Ergebnis wird in Punkten angegeben. Modellhaft wird angenommen, dass diese Punktzahl mit zunehmendem Alter exponentiell abnimmt. Lena ist eine dieser Personen. Von ihr sind folgende Daten bekannt:
Alter in Jahren | 55 | 60 |
Punktezahl | 1800 | 1650 |
Aufgabenstellung - Bearbeitungszeit 05:40
Ermitteln Sie unter Verwendung eines exponentiellen Modells, ab welchem Alter Lena voraussichtlich höchstens 1 200 Punkte erreichen wird.
[0 / 1 P.]
Aufgabe 1889
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bevölkerungszahl
Es wurde erhoben, wie sich die Bevölkerungszahl in verschiedenen Städten in den vergangenen fünf Jahren verändert hat. Zwei der unten angeführten Situationen können als exponentielles Wachstum der jeweiligen Bevölkerungszahl beschrieben werden.
- Aussage 1: Die Bevölkerungszahl nahm jedes Jahr um 1/10 der Bevölkerungszahl des jeweiligen Vorjahres zu.
- Aussage 2: Die Bevölkerungszahl hat im ersten Jahr um 10 000, im zweiten um 20 000, im dritten um 30 000, im vierten um 40 000 und im letzten Jahr um 50 000 zugenommen.
- Aussage 3: Die Bevölkerungszahl war jedes Jahr um 5 % größer als im jeweiligen Vorjahr.
- Aussage 4: Die Bevölkerungszahl war jedes Jahr um 20 000 größer als im jeweiligen Vorjahr.
- Aussage 5: Die Bevölkerungszahl war in den ersten zwei Jahren jedes Jahr um 5 % größer als im jeweiligen Vorjahr, dann jedes Jahr um 15 % größer als im jeweiligen Vorjahr.
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie die beiden Situationen an, die jeweils mithilfe einer Exponentialfunktion angemessen beschrieben werden können.
[2 aus 5]
[0 / 1 P.]
Aufgabe 1890
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Intervallgrenze
Gegeben ist die Funktion f mit der Funktionsgleichung
\(f\left( x \right) = - {x^2} + 3 \cdot x + 2\)
Im Intervall [0; b] (mit b > 0) ist die mittlere Änderungsrate von f gleich null.
Aufgabenstellung - Bearbeitungszeit 05:40
Ermitteln Sie die Intervallgrenze b.
b =
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1891
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 14. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Traubensaft
Ein bestimmter Behälter wird mit Traubensaft befüllt. Die Funktion f beschreibt den Füllstand des Traubensafts im Behälter in Abhängigkeit von der Zeit t. Dabei gilt:
• Der Füllvorgang erfolgt ohne Unterbrechung.
• Die Zunahme des Füllstands nimmt laufend (d. h. streng monoton) ab.
t | Zeit seit Beginn des Füllvorgangs in s |
f(t) | Füllstand des Traubensafts im Behälter zur Zeit t in cm |
t1, t2 | zwei bestimmte Zeitpunkte während des Füllvorgangs mit t1 < t2 |
- Aussage 1: Die 1. Ableitung von f hat an der Stelle t1 einen positiven Wert.
- Aussage 2: Die 1. Ableitung von f hat an der Stelle t2 einen negativen Wert.
- Aussage 3: Die 1. Ableitung von f hat an der Stelle t1 den gleichen Wert wie die 1. Ableitung von f an der Stelle t2.
- Aussage 4: Die 2. Ableitung von f hat an der Stelle t1 einen positiven Wert.
- Aussage 5: Die 2. Ableitung von f hat an der Stelle t2 einen negativen Wert.
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie die beiden zutreffenden Aussagen an.
[2 aus 5]
Aufgabe 1892
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 15. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Geschwindigkeit-Funktion
Für die Bewegung eines bestimmten Körpers gibt v(t) die Geschwindigkeit zum Zeitpunkt t an (t in s, v(t) in m/s). Der Graph von v ist im Zeitintervall [0; 30] in der nachstehenden Abbildung dargestellt.
Unten stehend sind Aussagen über die Zeit-Weg-Funktion s und die Zeit-Beschleunigung- Funktion a für diese Bewegung angeführt (t in s, s(t) in m, a(t) in m/s2).
- Aussage 1: Es gilt: s(10) < 10.
- Aussage 2: Es gibt einen Zeitpunkt t0 ∈ [0; 30] mit a(t0) = 0.
- Aussage 3. Zum Zeitpunkt t = 15 ist die Beschleunigung maximal.
- Aussage 4: Es gilt: s(30) – s(0) > 300.
- Aussage 5: Für alle t1, t2 ∈ [0; 30] mit t2 > t1 gilt: s(t2) > s(t1).
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie die beiden zutreffenden Aussagen an.
[2 aus 5]
Aufgabe 1893
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Monotonie- und Krümmungsverhalten
Gegeben sind eine Polynomfunktion f und zwei Stellen x1 und x2 mit x1 < x2. Für die 1. Ableitung f‘ von f gilt:
\(f'\left( {{x_1}} \right) < 0{\text{ und }}f'\left( {{x_2}} \right) > 0\)
- Aussage 1: Im Intervall (x1; x2) gibt es mindestens eine Stelle x0, für die f‘(x0) = 0 gilt.
- Aussage 2: Die Funktion f hat im Intervall (x1; x2) eine lokale Maximumstelle.
- Aussage 3: Die Funktion f hat im Intervall (x1; x2) eine Wendestelle.
- Aussage 4: Im Intervall (x1; x2) schneidet der Graph von f mindestens einmal die x-Achse.
- Aussage 5: Im Intervall (x1; x2) ändert sich das Monotonieverhalten von f.
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie die beiden Aussagen an, die auf jeden Fall zutreffen.
[2 aus 5]