Rohrproduktion - Aufgabe B_089
Aufgabe B_089: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe mit 4 Teilaufgaben
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4105
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil a
Ein Unternehmen stellt Kunststoffrohre her, die zu einem fixen Preis verkauft werden. Im nachstehenden Diagramm ist der Graph der Kostenfunktion K für die Herstellung der Kunststoffrohre dargestellt.
Der Break-even-Point liegt bei einer Produktion von 8 ME. Die Kosten betragen dabei 400 GE.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Erlösfunktion E im obigen Diagramm ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zugehörigen Marktpreis.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie in der nachstehenden Wertetabelle die fehlenden Werte für die zugehörige Gewinnfunktion G.
[1 Punkt]
x in ME | 0 | 8 | 16 |
G(x) in GE0 | 0 |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4106
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil b
Die Grenzkostenfunktion K′ für die Herstellung von Kunststoffrohren ist gegeben durch:
\(K'\left( x \right) = \dfrac{{15}}{{32}} \cdot {x^2} - \dfrac{{35}}{4} \cdot x + 60\)
x | produzierte Menge in ME |
K'(x) |
Grenzkosten bei der produzierten Menge x in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K mit K(16) = 600.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kostenkehre.
[1 Punkt
Aufgabe 4107
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil c
Ein anderes Unternehmen stellt Keramikrohre her. Von der quadratischen Erlösfunktion E ist für den Absatz von 10 ME bekannt:
- E(10) = 15
- E′(10) = –1,5
- E″(10) = –0,6
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage über den Erlös bei einem Absatz von 11 ME an.
[1 aus 5] [1 Punkt]
- Aussage 1: E(11)=13,2
- Aussage 2: E(11)=13,5
- Aussage 3: E(11)=14,1
- Aussage 4: E(11)=16,2
- Aussage 5: E(11)=16,5
Aufgabe 4108
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil d
Die Erlösfunktion E für Betonrohre ist gegeben durch:
\(E\left( x \right) = - 3,2 \cdot x \cdot \left( {x - 25} \right)\)
mit
x | Absatzmenge in ME |
E(x) | Erlös bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage.
[1 Punkt]
2 Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Höchstpreis.
[1 Punkt]