Fruchtsaftproduktion - Aufgabe B_483
Aufgabe B_483: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe mit 4 Teilaufgaben
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4418
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil a
Die Kosten bei der Produktion des Fruchtsafts Mangomix können durch eine ertragsgesetzliche Kostenfunktion K beschrieben werden:
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + 105 \cdot x + 1215\)
x | Produktionsmenge in hl |
K(x) | Kosten bei der Produktionsmenge x in € |
Von der Kostenfunktion ist bekannt:
- I: Die Grenzkosten bei einer Produktionsmenge von 25 hl betragen 30 €/hl.
- II: K″(25) = 0
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, die die Bedingung I beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung der Zahl 25 in der Gleichung II im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koeffizienten a und b.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4419
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil b
In der nachstehenden Abbildung sind die Graphen der Grenzkostenfunktion K′, der Durchschnittskostenfunktion K und der variablen Durchschnittskostenfunktion Kv für den Fruchtsaft Mangomix dargestellt. Vier Produktionsmengen, xA bis xD, sind auf der horizontalen Achse markiert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Begriffen jeweils die zutreffende Produktionsmenge aus A bis D zu.
[2 zu 4] [1 Punkt]
- Begriff: Kostenkehre
- Begriff: Betriebsminimum
- Produktionsmenge A: xA
- Produktionsmenge B: xB
- Produktionsmenge C: xC
- Produktionsmenge D: xD
Aufgabe 4420
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil c
Der Erlös beim Verkauf des Fruchtsafts Mangomix kann durch eine quadratische Funktion E beschrieben werden:
\(E\left( x \right) = a \cdot {x^2} + b \cdot x{\text{ mit }}x \geqslant 0\)
x |
|
E(x) |
|
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
[Lückentext] [1 Punkt]
Der Koeffizient a muss ____1____ sein, weil der Graph von E ____2____ .
- Satzteil 1.1: positiv
- Satzteil 1.2: negativ
- Satzteil 1.3: gleich null
- Satzteil 2.1: durch den Ursprung geht
- Satzteil 2.2: keinen Wendepunkt hat
- Satzteil 2.3: nach unten geöffnet ist
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass der maximale Erlös bei der Absatzmenge
\({x_0} = - \dfrac{b}{{2 \cdot a}}\)
erzielt wird.
[1 Punkt]
Aufgabe 4421
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil d
Der Grenzgewinn für den Fruchtsaft Mangomix kann durch die Funktion G′ beschrieben werden:
\(G'\left( x \right) = - 0,12 \cdot {x^2} - 4 \cdot x + 220\)
x |
Absatzmenge in hl |
G'(x) | Grenzgewinn bei der Absatzmenge x in €/hl |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diejenige Absatzmenge, bei der der maximale Gewinn erzielt wird.
[1 Punkt]
Die Fixkosten betragen 1.215 €.
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Gewinnfunktion G unter Berücksichtigung der Fixkosten.
[1 Punkt]
Es soll derjenige Bereich für die Absatzmenge ermittelt werden, in dem der Gewinn mindestens 1.000 € betragt.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diesen Bereich.
[1 Punkt]