BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_W_4.2
Typische Verläufe der Graphen der Preisfunktion der Nachfrage, der Erlösfunktion, der Kostenfunktion und der Gewinnfunktion skizzieren, darstellen und interpretieren; Nullstellen, Extremwerte und Wendepunkt berechnen, interpretieren und damit argumentieren
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4105
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil a
Ein Unternehmen stellt Kunststoffrohre her, die zu einem fixen Preis verkauft werden. Im nachstehenden Diagramm ist der Graph der Kostenfunktion K für die Herstellung der Kunststoffrohre dargestellt.
Der Break-even-Point liegt bei einer Produktion von 8 ME. Die Kosten betragen dabei 400 GE.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Erlösfunktion E im obigen Diagramm ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zugehörigen Marktpreis.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie in der nachstehenden Wertetabelle die fehlenden Werte für die zugehörige Gewinnfunktion G.
[1 Punkt]
x in ME | 0 | 8 | 16 |
G(x) in GE0 | 0 |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betonrohre - Aufgabe B_452
Teil a
In der nachstehenden Abbildung ist der Graph der Preisfunktion der Nachfrage p für Betonrohre des Modells A dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Preisfunktion der Nachfrage p.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung von p im gegebenen Sachzusammenhang.
[1 Punkt]
Die Betonrohre des Modells A werden um € 32 pro Stuck verkauft.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die zugehörige Anzahl der nachgefragten Betonrohre des Modells A.
[1 Punkt]
Aufgabe 4418
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil a
Die Kosten bei der Produktion des Fruchtsafts Mangomix können durch eine ertragsgesetzliche Kostenfunktion K beschrieben werden:
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + 105 \cdot x + 1215\)
x | Produktionsmenge in hl |
K(x) | Kosten bei der Produktionsmenge x in € |
Von der Kostenfunktion ist bekannt:
- I: Die Grenzkosten bei einer Produktionsmenge von 25 hl betragen 30 €/hl.
- II: K″(25) = 0
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, die die Bedingung I beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung der Zahl 25 in der Gleichung II im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koeffizienten a und b.
[1 Punkt]
Aufgabe 4419
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil b
In der nachstehenden Abbildung sind die Graphen der Grenzkostenfunktion K′, der Durchschnittskostenfunktion K und der variablen Durchschnittskostenfunktion Kv für den Fruchtsaft Mangomix dargestellt. Vier Produktionsmengen, xA bis xD, sind auf der horizontalen Achse markiert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Begriffen jeweils die zutreffende Produktionsmenge aus A bis D zu.
[2 zu 4] [1 Punkt]
- Begriff: Kostenkehre
- Begriff: Betriebsminimum
- Produktionsmenge A: xA
- Produktionsmenge B: xB
- Produktionsmenge C: xC
- Produktionsmenge D: xD
Aufgabe 4420
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil c
Der Erlös beim Verkauf des Fruchtsafts Mangomix kann durch eine quadratische Funktion E beschrieben werden:
\(E\left( x \right) = a \cdot {x^2} + b \cdot x{\text{ mit }}x \geqslant 0\)
x |
|
E(x) |
|
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
[Lückentext] [1 Punkt]
Der Koeffizient a muss ____1____ sein, weil der Graph von E ____2____ .
- Satzteil 1.1: positiv
- Satzteil 1.2: negativ
- Satzteil 1.3: gleich null
- Satzteil 2.1: durch den Ursprung geht
- Satzteil 2.2: keinen Wendepunkt hat
- Satzteil 2.3: nach unten geöffnet ist
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass der maximale Erlös bei der Absatzmenge
\({x_0} = - \dfrac{b}{{2 \cdot a}}\)
erzielt wird.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4421
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil d
Der Grenzgewinn für den Fruchtsaft Mangomix kann durch die Funktion G′ beschrieben werden:
\(G'\left( x \right) = - 0,12 \cdot {x^2} - 4 \cdot x + 220\)
x |
Absatzmenge in hl |
G'(x) | Grenzgewinn bei der Absatzmenge x in €/hl |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diejenige Absatzmenge, bei der der maximale Gewinn erzielt wird.
[1 Punkt]
Die Fixkosten betragen 1.215 €.
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Gewinnfunktion G unter Berücksichtigung der Fixkosten.
[1 Punkt]
Es soll derjenige Bereich für die Absatzmenge ermittelt werden, in dem der Gewinn mindestens 1.000 € betragt.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diesen Bereich.
[1 Punkt]
Aufgabe 4452
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Möbel - Aufgabe B_513
Teil a
Im Folgenden sind die Graphen von 5 Funktionen dargestellt. Nur einer dieser Graphen kann der Graph einer Erlösfunktion sein.
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie den zutreffenden Graphen an.
[1 aus 5] [0 / 1 P.]
- Graph 1:
Bild
- Graph 2:
Bild - Graph 3:
Bild - Graph 4:
Bild - Graph 5:
Bild
Aufgabe 4453
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Möbel - Aufgabe B_513
Teil b
In der nachstehenden Abbildung ist der Graph der Kostenfunktion K1 eines Betriebs bei der Produktion von Kleiderschränken dargestellt.
x |
Produktionsmenge in Stück |
K1(x) |
Gesamtkosten bei der Produktionsmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie das größtmögliche Produktionsintervall ab, in dem der Verlauf der Kostenfunktion K1 degressiv ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der obigen Abbildung die Stückkosten bei einer Produktion von 200 Stück.
[0 / 1 P.]
Die Fixkosten können um 10 % reduziert werden.
3. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum sich die Grenzkostenfunktion dadurch nicht ändert.
[0 / 1 P.]
Aufgabe 4454
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Möbel - Aufgabe B_513
Teil c
Die Kostenfunktion K2 eines Betriebs bei der Produktion von Kommoden ist gegeben durch:
\({K_2}\left( x \right) = 0,001 \cdot {x^3} - 0,9 \cdot {x^2} + a \cdot x + 3000\)
x |
Produktionsmenge in Stück |
K2(x) | Gesamtkosten bei der Produktionsmenge x in GE |
Bei einer Produktion von 100 Kommoden hat der Betrieb Gesamtkosten von 35 000 GE.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Koeffizienten a der Kostenfunktion K2.
[0 / 1 P.]
2 Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie das Betriebsoptimum.
[0 / 1 P.]
Der Break-even-Point wird bei einem Verkauf von 60 Kommoden erreicht.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Preis pro Kommode bei dieser verkauften Menge.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4508
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Waldführungen - Aufgabe B_526
Ein Naturschutzzentrum bietet verschiedene Waldführungen an.
Teil c
In den Sommerferien werden Abenteuertouren angeboten. Für diese Touren werden die möglichen Verkaufszahlen von Jugendkarten und Erwachsenenkarten untersucht. Die tägliche Nachfrage nach Jugendkarten ist vom Preis der Karten abhängig. Die nachstehende Abbildung zeigt den Graphen der zugehörigen Preisfunktion der Nachfrage pN für die Jugendkarten.
1. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie aus der obigen Abbildung diejenige Nachfrage nach Jugendkarten ab, bei der der Preis 12,50 € / Stück beträgt.
[0 / 1 P.]
In der nachstehenden Abbildung ist der Lösungsbereich für die Anzahl der verkauften Jugendkarten und Erwachsenenkarten bei Abenteuertouren dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Überprüfen Sie nachweislich, ob die oben ermittelte Nachfrage nach Jugendkarten an einem Tag erfüllt werden kann, an dem 13 Erwachsenenkarten verkauft werden.
[0 / 1 P.]
Aufgabe 4509
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Scheiben für PKWs - Aufgabe B_527
Ein Betrieb stellt Frontscheiben und Heckscheiben für PKWs her.
Teil a
In der nachstehenden Abbildung sind der Graph der Kostenfunktion K und der Graph der quadratischen Erlösfunktion E für Frontscheiben eines bestimmten Typs dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der quadratischen Erlösfunktion E auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage auf.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie aus der obigen Abbildung die Gewinnzone ab.
[ ; ]
[0 / 1 P.]
Aufgabe 4510
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Scheiben für PKWs - Aufgabe B_527
Ein Betrieb stellt Frontscheiben und Heckscheiben für PKWs her.
Teil b
Die variablen Kosten bei der Produktion von Heckscheiben eines bestimmten Typs können durch die Funktion Kv beschrieben werden.
\({K_v}\left( x \right) = 0,0029 \cdot {x^3} - 0,45 \cdot {x^2} + 24 \cdot x\)
x | produzierte Menge in ME |
Kv(x) |
variable Kosten bei der produzierten Menge x in GE |
Die Fixkosten betragen 450 GE.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die langfristige Preisuntergrenze.
[0 / 1 P.]
In der nebenstehenden Abbildung sind
- der Graph der Durchschnittskostenfunktion K,
- der Graph der Grenzkostenfunktion K′ und
- der Graph der variablen Durchschnittskostenfunktion Kv
dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie diejenige Größe an, die nicht aus der obigen Abbildung abgelesen werden kann.
[1 aus 5] [0 / 1 P.]
- Größe 1: Kostenkehre
- Größe 2: Fixkosten
- Größe 3: Betriebsminimum
- Größe 4: Betriebsoptimum
- Größe 5kurzfristige Preisuntergrenze
Die Preisfunktion der Nachfrage pN für Heckscheiben dieses Typs ist gegeben durch:
\({p_N}\left( x \right) = - 0,16 \cdot x + 30\)
x | nachgefragte Menge in ME |
pN(x) |
Preis bei der nachgefragten Menge x in GE/ME |
3. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie den Höchstpreis an.
[0 / 1 P.]
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Cournot’schen Preis.
[0 / 1 P.]