Bayern Mathematik Abitur 2015 - Prüfungsteil A+B - ohne CAS - Gruppe 1
Aufgabe 6000
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produkt einer Polynomfunktion mit einer Logarithmusfunktion
Gegeben ist die Funktion \(f:x \mapsto \left( {{x^3} - 8} \right) \cdot \left( {2 + \ln x} \right)\) mit maximalem Definitionsbereich D.
1. Teilaufgabe a) 1 BE - Bearbeitungszeit: 2:20
Geben Sie D an.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Nullstellen von f
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6001
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Graph und Funktionsgleichung ganzrationaler Funktionen
Gegeben sind die in \({\Bbb R}\) definierten Funktionen f, g und h mit
\(\eqalign{ & f\left( x \right) = {x^2} - x + 1 \cr & g\left( x \right) = {x^3} - x + 1 \cr & h\left( x \right) = {x^4} + {x^2} + 1 \cr} \)
Die unten stehende Abbildung zeigt den Graphen einer der drei Funktionen.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie an, um welche Funktion es sich handelt.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.
Die erste Ableitungsfunktion von h ist h‘.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie den Wert von \(\int\limits_0^1 {h'\left( x \right)\,\,dx} \).
Aufgabe 6002
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Parameter von Funktionen
1. Teilaufgabe a) 1 BE - 140 Bearbeitungszeit: 2:20
Geben Sie einen positiven Wert für den Parameter a an, sodass die in \({\Bbb R}\) definierte Funktion \(f:x \mapsto \sin \left( {ax} \right)\) eine Nullstelle in \(x = \dfrac{\pi }{6}\) hat.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Ermitteln Sie den Wert des Parameters b, sodass die Funktion \(g:x \mapsto \sqrt {{x^2} - b} \) den maximalen Definitionsbereich \({\Bbb R}\backslash \left] { - 2;2} \right[\) besitzt.
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Erläutern Sie, dass die in \({\Bbb R}\) definierte Funktion \(h:c \mapsto 4 - {e^x}\) den Wertebereich \(\left] { - \infty ;4} \right[\) besitzt.
Aufgabe 6003
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Newtonsches Näherungsverfahren
Die nachfolgende Abbildung
zeigt den Graphen einer in \({\Bbb R}\) definierten differenzierbaren Funktion
\(g:x \mapsto g\left( x \right)\)
Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle a von g ermittelt werden.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass weder die x-Koordinate des Hochpunkts H noch die x-Koordinate des Tiefpunkts T als Startwert des Newton-Verfahrens gewählt werden kann.
Aufgabe 6004
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Polynomfunktion 3. Grades
Gegeben ist die Funktion f mit
\(f\left( x \right) = {x^3} - 6 \cdot {x^2} + 11 \cdot x - 6{\text{ und }}x \in {\Bbb R}\)
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Weisen Sie nach, dass der Wendepunkt des Graphen von f auf der Geraden mit der Gleichung \(y = x - 2\) liegt.
Der Graph von f wird verschoben. Der Punkt (2 | 0) des Graphen der Funktion f besitzt nach der Verschiebung die Koordinaten (3 | 2). Der verschobene Graph gehört zu einer Funktion h.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Geben Sie eine Gleichung von h an.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6009
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Bernoullikette
Bei der Wintersportart Biathlon wird bei jeder Schießeinlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit p beschrieben.
1. Teilaufgabe a.1) 3 BE - Bearbeitungszeit: 7:00
Geben Sie für die folgenden Ereignisse A und B jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von p beschreibt.
- Aussage A: „Der Biathlet trifft bei genau vier Schüssen.“
- Aussage B: „Der Biathlet trifft nur bei den ersten beiden Schüssen.“
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Erläutern Sie anhand eines Beispiels, dass die modellhafte Beschreibung der Schießeinlage durch eine Bernoullikette unter Umständen der Realität nicht gerecht wird.
Aufgabe 6010
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produktregel für mehrstufige Zufallsexperimente
Ein Moderator lädt zu seiner Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.
1. Teilaufgabe a) 1 BE - Bearbeitungszeit: 2:20
Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.
Der Sender hat festgelegt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen.
Aufgabe 6013
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Gerade g verläuft durch die Punkte A(0 |1| 2) und B(2 | 5 | 6).
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass die Punkte A und B den Abstand 6 haben.
Die Punkte C und D liegen auf g und haben von A jeweils den Abstand 12.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von C und D.
Die Punkte A, B und E(1| 2 | 5) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten. Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.
Aufgabe 6014
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Betrachtet wird die Pyramide ABCDS mit A(0 | 0 | 0), B(4 | 4 | 2) , C(8 | 0 | 2), D(4 | -4 | 0) und S(1|1| -4) . Die Grundfläche ABCD ist ein Parallelogramm.
Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Weisen Sie nach, dass das Parallelogramm ABCD ein Rechteck ist.
Die Kante \(\left[ {AS} \right]\) senkrecht auf der Grundfläche ABCD. Der Flächeninhalt der Grundfläche beträgt \(24 \cdot \sqrt 2 \)
Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie das Volumen der Pyramide.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6018
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion f mit
\(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Zeigen Sie, dass f (x) zu jedem der drei folgenden Terme äquivalent ist:
- Term 1: \(\dfrac{2}{{\left( {x + 1} \right) \cdot \left( {x + 3} \right)}}\)
- Term 2: \(\dfrac{2}{{{x^2} + 4x + 3}}\)
- Term 3: \(\dfrac{1}{{0,5 \cdot {{\left( {x + 2} \right)}^2} - 0,5}}\)
2. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass die x-Achse horizontale Asymptote von Gf ist.
3. Teilaufgabe b.2) 1 BE - Bearbeitungszeit:2:20
Geben Sie die Gleichungen der vertikalen Asymptoten von Gf an.
4. Teilaufgabe b.3) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Koordinaten des Schnittpunkts von Gf mit der y-Achse.
Die nachfolgende Abbildung 1 zeigt den Graphen der in \({\Bbb R}\) definierten Funktion
\(p:x \mapsto 0,5 \cdot {\left( {x + 2} \right)^2} - 0,5\), die die Nullstellen x=- 3 und x=-1 hat.
Für \(x \in {D_f}{\text{ gilt }}f\left( x \right) = \dfrac{1}{{p\left( x \right)}}\)
Gemäß der Quotientenregel gilt für die Ableitungen f‘ und p‘ die Beziehung
\(f'\left( x \right) = - \dfrac{{p'\left( x \right)}}{{{{\left( {p\left( x \right)} \right)}^2}}}{\text{ für x}} \in {{\text{D}}_f}\)
5. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass x=-2 einzige Nullstelle von f‘ ist.
6. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 3;2} \right[\) streng monoton steigend ist
7. Teilaufgabe c.3) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 2; - 1} \right[\) streng monoton fallend ist.
8. Teilaufgabe c.4) 2 BE - Bearbeitungszeit: 4:40
Geben Sie Lage des Extrempunkts von Gf an.
Geben Sie Art des Extrempunkts von Gf an.
9. Teilaufgabe d.1) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie f (-5) und f (-1,5)
10. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie Gf unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.
Aufgabe 6019
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
Abbildung 1 zeigt den Graphen Gh von h.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie anhand des Funktionsterms, dass \(\mathop {\lim }\limits_{x \to + \infty } h\left( x \right) = 0\) gilt.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie rechnerisch für \(x \in {D_h}\) dass für die Ableitung h‘ von h gilt: \(h'\left( x \right) < 0\)
Gegeben ist ferner die in Dh definierte Integralfunktion
\({H_0} = x \mapsto \int\limits_0^x {h\left( t \right)} \,\,dt\).
3. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr ist: Der Graph von H0 ist streng monoton steigend.
4. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr ist: Der Graph von H0 ist rechts gekrümmt
5. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Nullstelle von H0 an.
6. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie näherungsweise mithilfe der Abbildung die Funktionswerte H0 (-0,5) sowie H0 (3) .
7. Teilaufgabe c.3) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie in der Abbildung den Graphen von H0 im Bereich \( - 0,5 \leqslant x \leqslant 3\)
Aufgabe 6020
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
beschreibt für \(x \geqslant 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet h(x) die momentane Schadstoffabbaurate in Gramm pro Minute und x die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt x, zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.
Die in \({\Bbb R}\backslash \left\{ { - 3;1} \right\}\) definierte Funktion
\(k:x \mapsto 3 \cdot \left( {\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}} \right) - 0,2\)
stellt im Bereich \( - 0,5 \leqslant x \leqslant 2\) eine gute Näherung für die Funktion h dar.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Beschreiben Sie, wie der Graph der Funktion k aus dem Graphen der Funktion \(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\) hervorgeht.
3. Teilaufgabe c.1) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie einen Näherungswert für \(\int\limits_0^1 {h\left( x \right)} \,\,dx\), indem Sie den Zusammenhang \(\int\limits_0^1 {h\left( x \right)} \,\,dx \approx \int\limits_0^1 {k\left( x \right)} \,\,dx\) verwenden.
4. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Bedeutung dieses Werts im Sachzusammenhang an.