Zerfallsprozess
Hier findest du folgende Inhalte
Formeln
Natürliche Exponentialfunktion
Die natürliche Exponentialfunktion, auch e-Funktion, Euler’sche Funktion genannt, ist eine spezielle Exponentialfunktion, nämlich eine mit der Euler’schen Zahl e=2,718 als Basis
\(\eqalign{ & f\left( x \right) = {e^x} \cr & f\left( 0 \right) = {e^0} = 1 \cr & f'\left( x \right) = {e^x} \cr}\)
- Die natürliche Exponentialfunktion ist eine speziell Exponentialfunktion, nämlich mit der Euler’schen Zahl e=2,718 als Basis: \(f\left( x \right) = {e^x} = {a^x}{\text{ mit }}a = e = 2,7182818..\)
- Gegenüber \(f\left( x \right) = {a^x}\) zeichnet sich die e-Funktion durch ihre Steigung aus:
- Als einzige Funktion f(x) ist ihre Ableitung f'(x) identisch mit der Funktion selbst.
- Die Stammfunktion F(x) ist ebenfalls - die um c auf der x-Achse verschobene - Funktion f(x)
- \(f'\left( x \right) = f\left( x \right) = F(x) = {e^x}\)
- \(f'\left( {x = 0} \right) = {e^0};\,\,\,\,\,f'\left( {x = 1} \right) = {e^1};\,\,\,\,\,f'\left( {x = 2} \right) = {e^2}\)
- Graph - die Exponentialkurve - verläuft durch \(P(0\left| e \right.),\,\,\,\,\,{Q_1}(1\left| e \right.),\,\,\,\,\,{Q_2}\left( {2\left| {{e^2}} \right.} \right),{\text{ usw}}.\)
- Sie ist die Umkehrfunktion der ln-Funktion
- Sie dient zur Beschreibung von Wachstums- bzw. Zerfallsprozessen.
Natürliche Exponentialfunktion mit Anfangswert N0
Exponentielles Wachstum, exponentieller Zerfall
\(N\left( t \right) = {N_0} \cdot {e^{\lambda t}}\)
- N0 ... Startwert, Startwert
- \(\lambda {\text{ > 0}}\) - positives l: Wachstumskonstante
- \(\lambda {\text{ < 0}}\) - negatives l: Zerfallskonstante
Natürliche Exponentialfunktion - Illustration zeigt Wachstum für \(\lambda = + 1\) bzw. Zerfall für \(\lambda = - 1\)
Natürliche Exponentialfunktion - Interaktive Illustration
Die interaktive Illustration einer natürlichen Exponentialfunktion zeigt die Wirkung von \(\lambda\) und von N0 auf der Website von Geogebra.org:
Illustration auf GeoGebra.org anzeigen
- Regler \(\lambda\): Entscheidet über Wachstum oder Zerfall
- Regler N0: Entscheidet über Startwert
Wenn Du obigem Link folgst, verlässt Du unsere Website. Die Website des Fremdanbieters wird sich in einem neuen Fenster öffnen.
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!

Aufgaben
Aufgabe 6020
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
beschreibt für \(x \geqslant 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet h(x) die momentane Schadstoffabbaurate in Gramm pro Minute und x die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt x, zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.
Die in \({\Bbb R}\backslash \left\{ { - 3;1} \right\}\) definierte Funktion
\(k:x \mapsto 3 \cdot \left( {\dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}} \right) - 0,2\)
stellt im Bereich \( - 0,5 \leqslant x \leqslant 2\) eine gute Näherung für die Funktion h dar.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Beschreiben Sie, wie der Graph der Funktion k aus dem Graphen der Funktion \(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\) hervorgeht.
3. Teilaufgabe c.1) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie einen Näherungswert für \(\int\limits_0^1 {h\left( x \right)} \,\,dx\), indem Sie den Zusammenhang \(\int\limits_0^1 {h\left( x \right)} \,\,dx \approx \int\limits_0^1 {k\left( x \right)} \,\,dx\) verwenden.
4. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Bedeutung dieses Werts im Sachzusammenhang an.
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!

Aufgabe 1343
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zerfallsprozess
Der unten abgebildete Graph einer Funktion N stellt einen exponentiellen Zerfallsprozess dar; Dabei bezeichnet t die Zeit und N(t) die zum Zeitpunkt t vorhandene Menge des zerfallenden Stoffes. Für die zum Zeitpunkt t = 0 vorhandene Menge gilt: N(0) = 800.
Mit tH ist diejenige Zeitspanne gemeint, nach deren Ablauf die ursprüngliche Menge des zerfallenden Stoffes auf die Hälfte gesunken ist.
- Aussage 1: \({t_H} = 6\)
- Aussage 2: \({t_H} = 2\)
- Aussage 3: \({t_H} = 3\)
- Aussage 4: \(N\left( {{t_H}} \right) = 400\)
- Aussage 5: \(N\left( {{t_H}} \right) = 500\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1279
AHS - 1_279 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zerfallsprozess
Die Population P einer vom Aussterben bedrohten Tierart sinkt jedes Jahr um ein Drittel der Population des vorangegangenen Jahres. P0 gibt die Anzahl der ursprünglich vorhandenen Tiere an.
- Aussage 1: \(P\left( t \right) = {P_0} \cdot {\left( {\dfrac{1}{3}} \right)^t}\)
- Aussage 2: \(P\left( t \right) = {P_0} \cdot {\left( {\dfrac{2}{3}} \right)^t}\)
- Aussage 3: \(P\left( t \right) = {P_0} \cdot \left( {1 - \dfrac{1}{3} \cdot t} \right)\)
- Aussage 4: \(P\left( t \right) = \dfrac{{{P_0}}}{{3 \cdot t}}\)
- Aussage 5: \(P\left( t \right) = \dfrac{{2 \cdot {P_0}}}{3} \cdot t\)
- Aussage 6: \(P\left( t \right) = {\left( {{P_0} - \dfrac{1}{3}} \right)^t}\)
Aufgabenstellung
Welche der obenstehend angeführten Gleichungen beschreibt die Population P in Abhängigkeit von der Anzahl der abgelaufenen Jahre t? Kreuzen Sie die zutreffende Gleichung an!