Monoton wachsende Funktion
Hier findest du folgende Inhalte
Formeln
Wichtige Funktionswerte im Zuge einer Kurvendiskussion
Im Rahmen von Kurvendiskussionen untersucht man verschiedene Eigenschaften von Funktionen
- Definitionsmenge, Stetigkeit und Differenzierbarkeit
- Polstellen und Lücken
- Verhalten im Unendlichen sowie Asymptotengleichungen
- Symmetrie sowie Periodizität
- Ableitungen f‘(x), f‘‘(x), f‘‘‘(x)
- Nullstellen f(x)=0 sowie Schnittpunkt mit der y-Achse f(0)
- Extremwerte (Hoch- und Tiefpunkte)
- Wendepunkte und Sattelpunkte
- Wendetangente
- Krümmungsverhalten und Monotonie
- Charakteristische Wertetabelle
- Graph der Funktion mit Wendetangente(n)
Extremstellen einer Funktion
Unter den Extremstellen einer Funktion versteht man deren Minimum bzw. Maximum. Wenn eine Funktion in einem geschlossenen Intervall stetig ist, dann hat sie darin auch ein Minimum und ein Maximum.
- notwendiges Kriterium: \(f'\left( x \right) = 0\)
- hinreichendes Kriterium: \(f'' \ne 0\)
- Minimum, wenn \(f'' > 0\)
- Maximum, wenn \(f'' < 0\)
Lokaler Extremwert
Ein lokaler Extremwert liegt vor, wenn es keinen kleineren / größeren Funktionswert in der unmittelbaren Nähe am Funktionsgraph gibt.
Absoluter bzw. globaler Extremwert
Ein absoluter Extremwert ist der kleinste / größte von allen lokalen Extremwerten.
Wendestelle einer Funktion
Im Wendepunkt bzw. an der Wendestelle ändert sich das Krümmungsverhalten vom Graphen der Funktion. Eine Linkskrümmung geht in eine Rechtskrümmung bzw. umgekehrt über. Nur im Wendepunkt schneidet eine Tangente an den Graph der Funktion diesen Graph. Ein Wendepunkt mit horizontaler Wendetangente heißt Sattelpunkt
An einer Wendestelle / im Wendepunkt gilt: \(f''\left( {{x_{WP}}} \right) = 0{\text{ sowie }}f'''\left( {{x_{WP}}} \right) \ne 0\)
- Ein Polynom vom \({\text{Grad }} \geqslant 3\) muss mindestens eine Wendestelle haben.
- Ein Polynom n-ten Grades kann maximal n-2 Wendestellen haben.
Monotonie von Funktionen
Steigt/fällt der Graph einer Funktion an jeder Stelle, so heißt die Funktion streng monoton steigend / fallend. Gibt es auch Stellen, an denen die Funktion weder steigt noch fällt, also konstant bleibt und daher parallel zur x-Achse verläuft, so fällt das Word „streng“ weg und die Funktion ist „nur“ monoton steigend / fallend. Aussagen betreffend Monotonie in bestimmten Intervalle der Funktion leitet man daraus ab, ob dort die ersten Ableitung \(f'\left( x \right)\) größer oder kleiner Null ist.
\(\eqalign{ & \forall {x_1},{x_2} \in {D_f}{\text{ mit }}{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right){\text{ streng monoton wachsend}} \cr & \forall {x_1},{x_2} \in {D_f}{\text{ mit }}{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) \leqslant f\left( {{x_2}} \right){\text{ monoton wachsend}} \cr & \forall {x_1},{x_2} \in {D_f}{\text{ mit }}{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right){\text{ streng monoton fallend}} \cr & \forall {x_1},{x_2} \in {D_f}{\text{ mit }}{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) \geqslant f\left( {{x_2}} \right){\text{ monoton fallend}} \cr}\)
Definitionslücke
Unter einer Definitionslücke versteht man einzelne Punkte einer Funktion, die aus dem Definitionsbereich ausgeschlossen sind. (Nullstellen des Nenners)
Dort ist die Funktion also nicht definiert. Entweder nähert sich der Graph dort einer senkrechten Asymptote an, dann liegt eine Polstelle vor, oder es liegt eine hebbare Definitionslücke vor. Eine hebbare Definitionslücke liegt dann vor, wenn die Vielfachheit der Nullstellen im Zähler größer oder gleich der Vielfachheit der Nullstellen im Nenner sind. Dann lässt sich die Nullstelle durch Kürzen entfernen.
Obige Illustration zeigt eine Funktion die an der Stelle x=1 nicht definiert ist und in deren Definitionsbereich somit an dieser Stelle eine Lücke vorliegt. Durch Kürzen kann man an der Stelle x=1 dem Definitionsbereich den Wert "2" zuordnen. Der Definitionsbereich ist somit \({D_f} = {\Bbb R}\), die Lücke ist geschlossen, man spricht von einer "hebbaren Definitionslücke"
Polstelle
Eine Polstelle ist eine Definitionslücke einer Funktion, an der sich die Funktionswerte asymptotisch einer senkrechten Geraden annähern, diese aber nie erreichen. Die gebrochenrationale Funktion \(f\left( x \right) = \dfrac{{p\left( x \right)}}{{q\left( x \right)}}\) besitzt an der Stelle x0 eine Polstelle, wenn gilt: \(p\left( {x = {x_0}} \right) \ne 0{\text{ und }}q\left( {x = {x_0}} \right) = 0\). Die Polstellen findet man, indem man die Nullstellen des Terms in Nenner bestimmt.
- Bei Polstellen mit Vorzeichenwechsel strebt die Funktion auf einer Seite nach + Unendlich während sie auf der anderen Seite nach - Unendlich strebt.
- Bei Polstellen ohne Vorzeichenwechsel streben beide Seiten entweder nach + oder nach - Unendlich
Obige Illustration zeigt den Graph der Funktion \(f\left( x \right) = \dfrac{1}{x}\)
- mit der x-Achse und der y-Achse als Asymptote
- der an der Stelle x=0 eine Polstelle mit Vorzeichenwechsel aufweist
Links- bzw. rechtsseitiger Grenzwert
An einer Polstelle mit Vorzeichenwechsel verhält sich der Graph der Funktion von links bzw. von rechts betrachtet unterschiedlich.
- Der linksseitige Grenzwert ist jener Funktionswert f(x) den man erhält, wenn man sich einem bestimmten Funktionsargument x0, entlang vom Funktionsgraphen von links kommend annähert.
- Der rechtsseitige Grenzwert ist jener Funktionswert f(x) den man erhält, wenn man sich einem bestimmten Funktionsargument x0, entlang vom Funktionsgraphen von rechts kommend annähert.
- Ist die Funktion an der Stelle x0 stetig, dann stimmen der links- und der rechtsseitige Grenzwert überein.
- Aus dem Inneren des Definitionsbereichs betrachtet kann man daher einen linksseitigen und einen rechtsseitigen Grenzwert ermitteln.
In GeoGebra gibt es dafür die Befehle- LinksseitigerGrenzwert (Funktion, Polstelle)
- RechtsseitigerGrenzwert (Funktion, Polstelle)
Asymptote
Eine Asymptote ist eine Gerade, der sich der Graph einer Funktion unbegrenzt annähert, sie aber nie erreicht.
Dabei unterscheidet man zwischen senkrechten, waagrechten und schiefen Asymptoten. Kurven, die sich dem Graph einer anderen Funktion zunehmend annähern, bezeichnet man als asymptotische Kurven.
- Zählergrad = Höchste Potenz im Zähler einer Funktion
- Nennergrad = Höchste Potenz im Nenner einer Funktion
- Zählergrad < Nennergrad: die Funktion hat die x-Achse als Asymptote
- Zählergrad = Nennergrad: die Asymptote verläuft horizontal
- Zählergrad = Nennergrad + 1: die Asymptote verläuft schief
- Zählergrad > Nennergrad+1: zu der Funktion gibt es eine asymptotische Kurve
- Senkrechte (=vertikale) Asymptoten sind dort, wo sich die Polstellen (Definitionslücken) einer Funktion befinden und in deren Nähe die Funktionswerte gegen unendlich streben. Die senkrechten Asymptoten finden sich dort wo der Nenner Nullstellen hat, die aber keine Nullstellen vom Zähler sind.
Bei obenstehender Funktion gilt: Zählergrad = 2 = Nennergrad und daher hat die Funktion \(f\left( x \right) = \dfrac{{{x^2}}}{{{x^2} - 1}}\) die horizontal verlaufende Asymptote y=1; An den Stellen x=-1 bzw. x=1 hat die Funktion zudem Polstellen mit Vorzeichenwechsel
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 6018
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion f mit
\(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Zeigen Sie, dass f (x) zu jedem der drei folgenden Terme äquivalent ist:
- Term 1: \(\dfrac{2}{{\left( {x + 1} \right) \cdot \left( {x + 3} \right)}}\)
- Term 2: \(\dfrac{2}{{{x^2} + 4x + 3}}\)
- Term 3: \(\dfrac{1}{{0,5 \cdot {{\left( {x + 2} \right)}^2} - 0,5}}\)
2. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass die x-Achse horizontale Asymptote von Gf ist.
3. Teilaufgabe b.2) 1 BE - Bearbeitungszeit:2:20
Geben Sie die Gleichungen der vertikalen Asymptoten von Gf an.
4. Teilaufgabe b.3) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Koordinaten des Schnittpunkts von Gf mit der y-Achse.
Die nachfolgende Abbildung 1 zeigt den Graphen der in \({\Bbb R}\) definierten Funktion
\(p:x \mapsto 0,5 \cdot {\left( {x + 2} \right)^2} - 0,5\), die die Nullstellen x=- 3 und x=-1 hat.
Für \(x \in {D_f}{\text{ gilt }}f\left( x \right) = \dfrac{1}{{p\left( x \right)}}\)
Gemäß der Quotientenregel gilt für die Ableitungen f‘ und p‘ die Beziehung
\(f'\left( x \right) = - \dfrac{{p'\left( x \right)}}{{{{\left( {p\left( x \right)} \right)}^2}}}{\text{ für x}} \in {{\text{D}}_f}\)
5. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass x=-2 einzige Nullstelle von f‘ ist.
6. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 3;2} \right[\) streng monoton steigend ist
7. Teilaufgabe c.3) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 2; - 1} \right[\) streng monoton fallend ist.
8. Teilaufgabe c.4) 2 BE - Bearbeitungszeit: 4:40
Geben Sie Lage des Extrempunkts von Gf an.
Geben Sie Art des Extrempunkts von Gf an.
9. Teilaufgabe d.1) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie f (-5) und f (-1,5)
10. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie Gf unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 121
Eigenschaften von Funktionen
Wähle alle richtigen Antworten!
- Aussage 1: Es gibt Funktionen, die weder injektiv noch surjektiv sind
- Aussage 2: Eine Funktion kann sowohl monoton steigende als auch monoton fallende Abschnitt beinhalten
- Aussage 3: Jede Funktion muss entweder injektiv oder surjektiv oder bijektiv sein.
- Aussage 4: Existiert eine Umkehrfunktion, dann ist die Funktion auch bijektiv
Aufgabe 4234
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. Jänner 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Genfer See - Aufgabe A_222
Teil b
Der Genfer See wird durch mehrere Flüsse gespeist. Der Wasserstand des Sees wird beim Abfluss reguliert. Die nachstehende Grafik zeigt den Verlauf der Durchflussrate des Wassers beim Abfluss innerhalb von 48 Stunden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie unter Angabe der entsprechenden Einheit, was mit dem Ausdruck \(\int\limits_0^{48} {f\left( t \right)} \,\,dt\) im gegebenen Sachzusammenhang berechnet wird.
[1 Punkt]
Die Funktion F ist eine Stammfunktion der in der obigen Grafik dargestellten Funktion f.
2. Teilaufgabe - Bearbeitungszeit 5:40
- Aussage 1: F hat die Stelle mit dem größten Anstieg im Intervall [14; 18].
- Aussage 2: F hat eine Maximumstelle im Intervall [26; 30].
- Aussage 3: F ist monoton fallend im Intervall [32; 44].
- Aussage 4: F ist monoton steigend im Intervall [4; 26].
- Aussage 5: F ist im Intervall [0; 16] positiv gekrümmt (linksgekrümmt).
[1 Punkt]
Aufgabe 1693
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 08. Mai 2019 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Arbeitslosenrate
Ein Politiker, der die erfolgreiche Arbeitsmarktpolitik einer Regierungspartei hervorheben möchte, sagt: „Die Zunahme der Arbeitslosenrate verringerte sich während des ganzen Jahres.“
Ein Politiker der Opposition sagt darauf: „Die Arbeitslosenrate ist während des ganzen Jahres gestiegen.“
Aufgabenstellung:
Die Entwicklung der Arbeitslosenrate während dieses Jahres kann durch eine Funktion f in Abhängigkeit von der Zeit modelliert werden.
Welcher der nachstehenden Graphen stellt die Entwicklung der Arbeitslosenrate während dieses Jahres dar, wenn die Aussagen beider Politiker zutreffen? Kreuzen Sie den zutreffenden Graphen an!
[0 / 1 Punkt]
Graph 1:
Graph 2:
Graph 3:
Graph 4:
Graph 5:
Graph 6: