Österreichische BHS Matura - 2018.05.09 - BRP & FAfEP & BASOP - 4 Teil B Beispiele
Aufgabe 4093
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil a
Eine Abrissbirne hat die Form einer Kugel mit dem Durchmesser d. Die Masse m und die Dichte ϱ der Kugel sind bekannt. Die Masse ist das Produkt von Volumen und Dichte.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Durchmessers d aus m und ϱ .
d= ……
[1 Punkt]
Eine einfache Regel besagt: „Um die Masse einer Kugel zu verdoppeln, ist ihr Durchmesser um rund ein Viertel zu vergrößern.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie allgemein, dass diese Regel richtig ist.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4094
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil b
Eine andere Abrissbirne kann als Körper modelliert werden, der durch Rotation des Graphen der Polynomfunktion f mit \(f\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2} + d \cdot x + e\) um die x-Achse entsteht.
Dabei gilt: A = (0|0), B = (1,1| 2,2), C = (9,4|5,1), D = (12| 0). Im Punkt C hat die Abrissbirne den größten Durchmesser.
1. Teilaufgabe - Bearbeitungszeit 11:20
Erstellen Sie mithilfe der Informationen zu A, B, C und D ein Gleichungssystem zur Berechnung der Koeffizienten der Polynomfunktion f.
[2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koeffizienten von f.
[1 Punkt]
Aufgabe 4095
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil c
Durch Rotation des Graphen der Funktion g im Intervall [1; b] um die x-Achse entsteht die Form einer weiteren Abrissbirne (siehe nachstehende Abbildung):
\(g\left( x \right) = - 0,00157 \cdot {x^4} + 0,03688 \cdot {x^3} - 0,29882 \cdot {x^2} + 1,26325 \cdot x\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Nullstelle b.
[1 Punkt]
Das Volumen dieser Abrissbirne soll verkleinert werden. Durch Rotation des Graphen der Funktion g im Intervall [1; a] um die x-Achse entsteht die Form einer Abrissbirne mit einem um 10 dm3 kleineren Volumen.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die in der obigen Abbildung dargestellte Stelle a.
[1 Punkt]
Aufgabe 4117
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Höhe der Wolkenuntergrenze - Aufgabe B_110
Die Höhe der Wolkenuntergrenze kann auf verschiedene Arten näherungsweise bestimmt werden.
Teil a
Die Höhe der Wolkenuntergrenze wurde früher mithilfe eines Nachtwolkenscheinwerfers bestimmt. Folgende Anweisung musste man dabei befolgen: „Platzieren Sie auf einer horizontalen Ebene den Scheinwerfer in einem Punkt P so, dass sein Lichtstrahl senkrecht nach oben gerichtet ist. Dort erzeugt er auf der Wolkenuntergrenze in der Höhe h einen punktförmigen Lichtfleck L. Begeben Sie sich in einen anderen Punkt Q dieser Ebene und messen Sie die Streckenlänge PQ. Messen Sie den Höhenwinkel α, unter dem der Lichtfleck L nun von Punkt Q aus gesehen wird.“
1. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie den beschriebenen Sachverhalt mithilfe einer Skizze. Beschriften Sie P, Q, L, h und α in dieser Skizze.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel, mit deren Hilfe man die Höhe der Wolkenuntergrenze h mit den gemessenen Größen bestimmen kann.
h = ________
[1 Punkt]
Aufgabe 4118
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Höhe der Wolkenuntergrenze - Aufgabe B_110
Die Höhe der Wolkenuntergrenze kann auf verschiedene Arten näherungsweise bestimmt werden.
Teil b
Ein Ceilometer ist ein Messgerät, mit dem man aufgrund einer Lichtlaufzeitmessung die Höhe der Wolkenuntergrenze bestimmen kann. Dabei gilt:
\(h = \dfrac{{c \cdot t}}{2}\)
mit
h | Höhe der Wolkenuntergrenze in m |
t | Lichtlaufzeit in s |
\(c \approx 300\,\,000\,\,000\,\,{\text{m/s}}\) | Lichtgeschwindigkeit |
Das Gerät misst eine Lichtlaufzeit von \(10\mu s\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Ausdruck an, mit dem die Höhe der Wolkenuntergrenze h in Metern korrekt ermittelt wird.
[1 aus 5] [1 Punkt]
- Aussage 1: \(\dfrac{{300 \cdot {{10}^{ - 6}} \cdot 10 \cdot {{10}^{ - 6}}}}{2}\)
- Aussage 2: \(\dfrac{{300 \cdot {{10}^6} \cdot 10 \cdot {{10}^{ - 9}}}}{2}\)
- Aussage 3: \(\dfrac{{3 \cdot {{10}^{ - 8}} \cdot {{10}^5}}}{2}\)
- Aussage 4: \(\dfrac{{3 \cdot {{10}^8} \cdot 10 \cdot {{10}^9}}}{2}\)
- Aussage 5: \(\dfrac{{3 \cdot {{10}^8} \cdot {{10}^{ - 5}}}}{2}\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4119
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Höhe der Wolkenuntergrenze - Aufgabe B_110
Die Höhe der Wolkenuntergrenze kann auf verschiedene Arten näherungsweise bestimmt werden.
Teil c
Eine Wolke wirft einen 150 m langen Schatten auf den Erdboden. Von A aus sieht man die Wolke unter dem Sehwinkel α = 4°. Der Einfallswinkel der parallelen Sonnenstrahlen gegenüber der Horizontalen betragt β = 30°.
Die folgende Abbildung stellt diese Situation vereinfacht und nicht maßstabsgetreu dar:
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die gegebenen Winkel α und β in die obige Abbildung ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Entfernung BC.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe h.
[1 Punkt]
Aufgabe 4120
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfel - Aufgabe B_115
Teil a
Das im Folgenden beschriebene Spiel wird mit herkömmlichen fairen Spielwürfeln gespielt, bei denen die Augenzahlen 1 bis 6 jeweils mit gleicher Wahrscheinlichkeit als Würfelergebnis auftreten. Es werden 2 Spielwürfel gleichzeitig geworfen und es wird deren Augensumme bestimmt. Nun sollen die zugehörigen Wahrscheinlichkeiten ermittelt werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die entsprechenden Wahrscheinlichkeiten in die nachstehende Tabelle ein.
[1 Punkt]
Augensumme |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Wahrscheinlichkeit |
Es wird Ihnen nun folgendes Spiel vorgeschlagen:
- Sie gewinnen, wenn die Augensumme 5, 6, 7 oder 8 beträgt.
oder
- Sie gewinnen mit allen übrigen Augensummen.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, welche der beiden Möglichkeiten die höhere Gewinnwahrscheinlichkeit hat.
[1 Punkt]
Aufgabe 4121
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfel - Aufgabe B_115
Teil b
Mit Würfeln wird eine Treppe gebaut:
Das obige Bauschema soll auf diese Art fortgesetzt werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie ein rekursives Bildungsgesetz, mit dem man die Anzahl der Würfel in der n-ten Ebene berechnen kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie, wie viele Würfel in der 7. Ebene liegen.
[1 Punkt]
Die Anzahl sn der Würfel, die für eine solche Treppe aus n Ebenen insgesamt benötigt wird, kann mithilfe der folgenden Formel bestimmt werden:
\({s_n} = 1,5 \cdot \left( {{n^2} + n} \right)\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, aus wie vielen Ebenen eine solche Treppe besteht, wenn man insgesamt 360 Würfel verbaut.
[1 Punkt]
Aufgabe 4122
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wiener Öffis - Aufgabe B_187
Wien betreibt das fünftgrößte Straßenbahnnetz weltweit und das fünftgrößte U-Bahn-Netz in der Europäischen Union. Seit 1995 steigt die Zahl der Passagiere ständig an.
Teil a
Fahrgastzahlen:
Jahr | 2002 | 2005 | 2008 | 2011 |
Fahrgastzahl der Wiener Linien in Millionen | 722,4 | 746,8 | 803,7 | 875,0 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der folgenden Berechnung im gegebenen Sachzusammenhang:
\(\dfrac{{875,0 - 722,4}}{{722,4}} \approx 0,21\)
[1 Punkt]
Es wird angenommen, dass der Zusammenhang zwischen der Zeit t in Jahren und der Fahrgastzahl der Wiener Linien in Millionen pro Jahr näherungsweise durch eine lineare Funktion beschrieben werden kann.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion. Wählen Sie t = 0 für das Jahr 2002.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe dieser Regressionsfunktion eine Prognose für die Fahrgastzahl im Jahr 2018.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4123
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wiener Öffis - Aufgabe B_187
Wien betreibt das fünftgrößte Straßenbahnnetz weltweit und das fünftgrößte U-Bahn-Netz in der Europäischen Union.
Teil b
Im Folgenden ist ein kleiner Ausschnitt des Wiener U-Bahn-Netzes abgebildet:
Die Mengen der Haltestellen der Linien U1, U2 und U4, die in diesem Ausschnitt dargestellt sind, werden mit U1, U2 bzw. U4 bezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in jeden Teilbereich des nachstehenden Diagramms die entsprechende Anzahl an Haltestellen für den abgebildeten Ausschnitt des Wiener U-Bahn-Netzes ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie die Namen derjenigen Haltestellen an, die in der folgenden Menge liegen:
U1 \ (U2 ∪ U4)
[1 Punkt]
Aus dem abgebildeten Ausschnitt des Wiener U-Bahn-Netzes wird eine Haltestelle zufällig ausgewählt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit dafür, dass es sich um eine Haltestelle handelt, die an mehr als einer U-Bahn-Linie liegt.
[1 Punkt]