Volumen eines Rotationskörpers
Hier findest du folgende Inhalte
Formeln
Bestimmtes Integral - Rotationskörper
Das bestimmte Integral ermöglicht es, die Mantelfläche und das Volumen von Rotationskörpern zu berechnen, die durch die Rotation einer Funktion um eine Koordinatenachse entstehen.
Bestimmtes Integral - Mantelfläche eines Rotationskörpers
Es sei y=f(x) eine über dem Intervall [a,b] stetige Funktion. Dann beträgt die Mantelfläche des Körpers, der durch Rotation der Funktion um die x-Achse entsteht Mx, bzw. sei die Mantelfläche bei Rotation der Funktion um die y-Achse My.
Bei Rotation um die x-Achse:
\({M_x} = 2\pi \int\limits_{x = a}^b {f\left( x \right) \cdot \sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} \,\,dx = } 2\pi \int\limits_{x = a}^b {y \cdot \sqrt {1 + {{\left( {y'} \right)}^2}} \,\,dx}\)
Bei Rotation um die y-Achse:
\({M_y} = 2\pi \int\limits_{\min \left[ {f\left( a \right),f\left( b \right)} \right]}^{\max \left[ {f\left( 1 \right),f\left( b \right)} \right]} {x \cdot \sqrt {1 + {{\left( {x'} \right)}^2}} \,\,dy}\)
Bestimmtes Integral - Volumen eines Rotationskörpers
Es sei y=f(x) eine über dem Intervall [a,b] stetige Funktion. Dann ist das Volumen des Körpers, der durch Rotation der Funktion um die x-Achse entsteht Vx, bzw. das Volumen bei Rotation der Funktion um die y-Achse sei Vy.
Bei Rotation um die x-Achse:
\({V_x} = \pi \int\limits_{x = a}^b {{{\left[ {f\left( x \right)} \right]}^2}\,\,dx = \pi \int\limits_a^b {{y^2}\,\,dx} }\)
Bei Rotation um die y-Achse:
\({V_y} = \pi \int\limits_{y = c}^d {{{\left[ {x \left( y \right)} \right]}^2}\,\,dy}\)
Anmerkung: Da Funktionen üblicher Weise als y=f(x) gegeben sind, muss man in diesen Fällen die Funktionsgleichung so umformen, dass x2 explizit wird.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 1061
AHS - 1_061 & Lehrstoff: FA 1.7
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Füllkurven
Die nachstehend dargestellten Rotationskörper werden über einen Zufluss, der eine konstante Wassermenge pro Zeiteinheit garantiert, gefüllt. Dabei wird die Höhe des Wasserstandes abhängig von der Zeiteinheit gemessen und aufgezeichnet. Der entstehende Graph wird Füllkurve genannt.
Zum Weiterlesen bitte aufklappen:
Füllkurven 1 .. 6
- Aussage A:
- Aussage B:
- Aussage C:
- Aussage D:
- Aussage E:
- Aussage F:
Rotationskörper 1 .. 4
- Rotationskörper 1:
- Rotationskörper 2:
- Rotationskörper 3:
- Rotationskörper 4:
Aufgabenstellung:
Ordnen Sie den Rotationskörpern jeweils die passende Füllkurve (aus A bis F) zu!
Deine Antwort | |
Rotationskörper 1 | |
Rotationskörper 2 | |
Rotationskörper 3 | |
Rotationskörper 4 |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4095
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abrissbirnen - Aufgabe B_012
Abrissbirnen sind kugel- oder birnenförmige Werkzeuge zum Abreisen von Gebäuden.
Teil c
Durch Rotation des Graphen der Funktion g im Intervall [1; b] um die x-Achse entsteht die Form einer weiteren Abrissbirne (siehe nachstehende Abbildung):
\(g\left( x \right) = - 0,00157 \cdot {x^4} + 0,03688 \cdot {x^3} - 0,29882 \cdot {x^2} + 1,26325 \cdot x\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Nullstelle b.
[1 Punkt]
Das Volumen dieser Abrissbirne soll verkleinert werden. Durch Rotation des Graphen der Funktion g im Intervall [1; a] um die x-Achse entsteht die Form einer Abrissbirne mit einem um 10 dm3 kleineren Volumen.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die in der obigen Abbildung dargestellte Stelle a.
[1 Punkt]
Aufgabe 4329
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gastwirtschaft - Aufgabe B_443
Teil b
Die Form eines Weizenbierglases kann näherungsweise durch die Rotation des Graphen der Funktion g um die x-Achse dargestellt werden (siehe nachstehende Abbildung).
Es gilt:
\(g\left( x \right) = - 0,00108 \cdot {x^3} + 0,046 \cdot {x^2} - 0,4367 \cdot x + 3\)
x, g(x) |
Koordinaten in cm |
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den kleinsten Innendurchmesser des Weizenbierglases.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie das Füllvolumen des Weizenbierglases in Litern.
[1 Punkt]
Aufgabe 4390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil a
Ein Unternehmen produziert Blumentöpfe. Der Außendurchmesser eines solchen Blumentopfs beträgt 40 cm. Auch die Gesamthöhe des Blumentopfs beträgt 40 cm. (Siehe nachstehende Abbildung der Begrenzungslinie. )
Für die Funktion f mit f(x) = y gilt:
\(y = \dfrac{{37}}{{{{19}^6}}} \cdot {x^6} + 3{\text{ mit }} - 19 \leqslant x \leqslant 19\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum f eine gerade Funktion ist.
[1 Punkt]
Die Innenwand des Blumentopfs entsteht durch Rotation des oben dargestellten Graphen von f um die y-Achse.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie das Innenvolumen des Blumentopfs.
[2 Punkte]
Aufgabe 4497
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Martinigläser - Aufgabe B_523
In der nebenstehenden Abbildung ist ein Martiniglas dargestellt. Der obere Teil des Martiniglases kann modellhaft als Drehkegel mit dem Durchmesser D und der Höhe H betrachtet werden.
Teil a
In der unten stehenden nicht maßstabgetreuen Abbildung ist ein Modell dieses Martiniglases dargestellt. Der Drehkegel entsteht durch Rotation des Graphen der linearen Funktion f um die x-Achse.
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie unter Verwendung von H und D die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe von H und D eine Gleichung der Funktion f auf.
f(x) =
[0 / 1 P.]
Vx ist das Volumen des Drehkegels, der bei Rotation des Graphen der Funktion f um die x-Achse entsteht.
3. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung von Vx auf.
Vx =
[0 / 1 P.]
Der obere Teil eines bestimmten Martiniglases wird durch Rotation des Graphen der Funktion g im Intervall [0; 75] um die x-Achse modelliert.
\(g\left( x \right) = \dfrac{{13}}{{17}} \cdot x\)
x, g(x) |
Koordinaten in mm |
Dieses Martiniglas wird mit einer Flüssigkeitsmenge von 2 dl befüllt.
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die zugehörige Füllhöhe (gemessen von der Spitze des Drehkegels).
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen