BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_5.4
Lineare Regression und Korrelation: Zusammenhangsanalysen für anwendungsbezogene Problemstellungen beschreiben und relevante Größen (Parameter der Funktionsgleichung, Korrelationskoeffizient nach Pearson) mittels Technologieeinsatz berechnen und interpretieren sowie die Methode der kleinsten Quadrate erklären und interpretieren
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4031
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leistungsdiagnostik im Sport - Aufgabe B_417
Teil b
Nach Beginn einer körperlichen Belastung beim Sport (Arbeitsphase) passt sich das Atmungssystem nur verzögert dem erhöhten Sauerstoffbedarf an. Erst nach einigen Minuten wird eine ausreichende Versorgung erreicht. Bis dahin kommt es zu einem Sauerstoffdefizit.
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie eine Formel auf, mit der man das Sauerstoffdefizit D die mit durchgängiger Begrenzung eingerahmte Fläche in obiger Skizze) berechnen kann, wenn eine Gleichung der Funktion s bekannt ist.
D =
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie die Einheit von D an.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4083
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Der Akku eines Smartphones entlädt sich aufgrund von Hintergrundanwendungen auch dann, wenn das Gerät nicht aktiv benutzt wird.
Teil a
Für ein bestimmtes Smartphone wird die zeitliche Entwicklung des Akku-Ladestands in Prozent beobachtet. Zur Zeit t = 0 ist der Akku vollständig aufgeladen.
Zeit t in Stunden | Akku-Ladestand in Prozent |
0 | 100 |
3 | 94 |
6 | 81 |
10 | 71 |
18 | 43 |
Die zeitliche Entwicklung des Akku-Ladestands in Prozent soll beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion.
[1 Punkt]
Bei einem Akku-Ladestand von 15 % sollte das Smartphone wieder ans Stromnetz angeschlossen werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele Stunden nach dem vollständigen Aufladen dies gemäß diesem linearen Regressionsmodell gemäß Teil a der Fall ist.
[1 Punkt]
Aufgabe 4122
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wiener Öffis - Aufgabe B_187
Wien betreibt das fünftgrößte Straßenbahnnetz weltweit und das fünftgrößte U-Bahn-Netz in der Europäischen Union. Seit 1995 steigt die Zahl der Passagiere ständig an.
Teil a
Fahrgastzahlen:
Jahr | 2002 | 2005 | 2008 | 2011 |
Fahrgastzahl der Wiener Linien in Millionen | 722,4 | 746,8 | 803,7 | 875,0 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der folgenden Berechnung im gegebenen Sachzusammenhang:
\(\dfrac{{875,0 - 722,4}}{{722,4}} \approx 0,21\)
[1 Punkt]
Es wird angenommen, dass der Zusammenhang zwischen der Zeit t in Jahren und der Fahrgastzahl der Wiener Linien in Millionen pro Jahr näherungsweise durch eine lineare Funktion beschrieben werden kann.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion. Wählen Sie t = 0 für das Jahr 2002.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe dieser Regressionsfunktion eine Prognose für die Fahrgastzahl im Jahr 2018.
[1 Punkt]
Aufgabe 4347
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Studienabschlüsse - Aufgabe B_450
Teil b
Folgende Tabelle gibt die jeweilige Anzahl der Studienabschlüsse an öffentlichen Universitäten in Österreich in den Jahren 2007 bis 2014 an:
Jahr | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Anzahl der Studienab- |
22.121 | 23.910 | 27.232 | 27.926 | 31.115 | 34.460 | 37.312 | 34.300 |
Datenquelle: Statistik Austria (Hrsg.): Bildung in Zahlen 2014/15. Tabellenband. Wien: Statistik Austria 2016, S. 320.
Jemand vermutet, dass sich die Anzahl der Studienabschlüsse in Abhängigkeit von der Zeit t näherungsweise durch eine lineare Funktion beschreiben lässt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung der zugehörigen linearen Funktion f. Wählen Sie t = 0 für das Jahr 2007.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Beurteilen Sie mithilfe des Korrelationskoeffizienten, ob die Regressionsfunktion ein geeignetes Modell darstellt, um die Entwicklung der Anzahl der Studienabschlüsse zu beschreiben.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, mit wie vielen Studienabschlüssen gemäß diesem Modell im Jahr 2020 zu rechnen ist. [1 Punkt]
Aufgabe 4393
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
W-LAN - Aufgabe B_475
In einer Fabrikshalle wird mit Access-Points und Repeatern ein W-LAN eingerichtet. Ein Access-Point verbindet einen Laptop kabellos mit einem Netzwerk. Ein Repeater verstärkt das Signal. Die Datenübertragungsrate beschreibt die übertragene Datenmenge pro Zeiteinheit und wird meist in der Einheit Megabit pro Sekunde (Mbit/s) angegeben.
Teil a
Die Datenübertragungsrate zu einem Laptop hängt von seiner Entfernung von einem Access- Point ab. Es wurden folgende Daten erhoben:
Entfernung in m | 2 | 8 | 16 | 30 | 39 | 46 |
Datenübertragungsrate in Mbit/s | 547 | 456 | 400 | 139 | 108 | 25 |
Ein Mitarbeiter geht aufgrund der Messwerte von einem annähernd linearen Zusammenhang für die Datenübertragungsrate in Abhängigkeit von der Entfernung aus.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie, warum der zugehörige Korrelationskoeffizient negativ sein muss.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie den Wert der Steigung dieser Funktion im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4437
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil d
Im Schlosspark wird Schilf gepflanzt. In den ersten Wochen nach der Pflanzung wird die Höhe einer bestimmten Pflanze notiert.
Zeit t nach der Pflanzung in Wochen | 1 | 2 | 3 | 4 | 5 | 6 |
Höhe der Pflanze zur Zeit t in cm | 30 | 34 | 39 | 44 | 48 | 52 |
Die Höhe dieser Pflanze soll in Abhängigkeit von der Zeit t durch die lineare Funktion h beschrieben werden.
t | Zeit nach der Pflanzung in Wochen |
h(t) | Höhe der Pflanze zur Zeit t in cm |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion h.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie gemäß diesem Modell die Höhe der Pflanze 20 Wochen nach der Pflanzung.
[0 / 1 P.]
Aufgabe 4440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil c
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tirunesh Dibaba im Finale des 10 000-Meter-Laufes der Frauen. In der nachstehenden Tabelle sind einige Distanzen und die zugehörigen Zwischenzeiten für die erste Hälfte des Laufes angegeben.
Distanz in m | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 |
Zeit in s | 180,5 | 360,2 | 543,8 | 726,6 | 910,0 |
Datenquelle: https://sportsscientists.com/2008/08/beijng-2008-10000-m-women/ [15.12.2020].
Die Zeit soll in Abhängigkeit von der Distanz durch eine lineare Regressionsfunktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung dieser linearen Funktion.
[0 / 1 P.]
Tirunesh Dibaba benötigte für diesen 10 000-Meter-Lauf insgesamt 29 min 54,66 s.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des relativen Fehlers, wenn zur Berechnung der Laufzeit von Tirunesh Dibaba die ermittelte Regressionsfunktion verwendet wird.
[0 / 1 P.]
Aufgabe 4534
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil b
Von 9 zufällig ausgewählten Mädchen einer anderen Altersgruppe wurden die Oberarmlänge und die Körpergröße gemessen:
Körpergröße in cm | 165 | 164 | 166 | 159 | 163 | 170 | 158 | 168 | 172 |
Oberarmlänge in cm | 34,5 | 34,7 | 34,6 | 34,0 | 34,5 | 35,0 | 33,8 | 34,9 | 34,9 |
Die Oberarmlänge soll in Abhängigkeit von der Körpergröße näherungsweise durch die lineare Funktion g beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion g auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Beurteilen Sie mithilfe des Korrelationskoeffizienten, ob die lineare Funktion g ein geeignetes Modell zur Beschreibung dieser Abhängigkeit ist.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung der linearen Funktion g im gegebenen Sachzusammenhang.
[0 / 1 P.]
Aufgabe 4562
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 3. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wasser – Aufgabe B_550
Teil b
Auf einer Website ist zu lesen: „Aktuell liegt der weltweite jährliche Süßwasserbedarf bei geschätzt 4 370 km3, wobei die Grenze der nachhaltigen Nutzung mit 4 000 km3 angegeben wird.“
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viel Prozent man den aktuellen Süßwasserbedarf reduzieren müsste, um die Grenze der nachhaltigen Nutzung zu erreichen.
[0 / 1 P.]
Der sogenannte Earth Overshoot Day („Welterschöpfungstag“) ist ein bestimmter Tag des Jahres, an dem die menschliche Nachfrage an natürlichen Ressourcen (wie zum Beispiel auch Süßwasser) die Kapazität der Erde in diesem Jahr übersteigt. Ab dem darauf folgenden Tag befindet sich die Menschheit in einem Defizit.
Jahr | Earth Overshoot Day | Anzahl der Tage im Defizit |
1990 | 10. Oktober | 82 |
1995 | 3. Oktober | 89 |
2000 | 22. September | 100 |
2005 | 24. August | 129 |
2010 | 6. August | 147 |
2015 | 3. August | 150 |
2016 | 3. August | 150 |
2017 | 30. Juli | 154 |
Datenquelle: https://www.overshootday.org/newsroom/past-earth-overshoot-days/ [24.11.2021].
Die Anzahl der Tage im Defizit soll in Abhängigkeit von der Zeit t in Jahren beschrieben werden.
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der zugehörigen linearen Funktion auf. Wählen Sie t = 0 für das Jahr 1990.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Argumentieren Sie mithilfe des Korrelationskoeffizienten, dass die lineare Regressionsfunktion ein geeignetes Modell darstellt, um die Entwicklung des Earth Overshoot Day zu beschreiben.
[0 / 1 P.]
4. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe dieses Modells, nach welcher Zeit t sich die Menschheit 364 Tage im Defizit befindet.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5602
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Distelsamen – Aufgabe B_552
Im Rahmen eines Projekts zum Thema Verbreitung von Unkrautsamen untersucht eine Gruppe von Schülerinnen das Fallverhalten von Distelsamen.
Teil b
Ein Distelsamen wird aus einer bestimmten Höhe fallen gelassen. Für eine bestimmte Phase der Bewegung kann der zurückgelegte Weg in Abhängigkeit von der Zeit modellhaft durch eine lineare Funktion beschrieben werden. Die Schülerinnen messen für diese Phase folgende Werte:
Zeit in s | 1,2 | 2,7 | 4,2 | 5,0 | 6,6 |
zurückgelegter Weg in cm | 20 | 40 | 60 | 80 | 100 |
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der zugehörigen linearen Funktion auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung dieser linearen Funktion im gegebenen Sachzusammenhang. Geben Sie dabei die zugehörige Einheit an.
[0 / 1 P.]
Aufgabe 5646
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rasenmähroboter – B_542
Immer öfter erledigen Rasenmähroboter die Mäharbeiten in Garten.
Teil d
Die nachstehende Tabelle zeigt die Preisentwicklung für ein bestimmtes Rasenmähroboter-Modell.
Zeit ab Beginn des Jahres 2015 in Monaten |
3 | 6 | 12 | 18 | 24 | 36 | 48 |
Verkaufspreis |
1204 | 1199 | 1137 | 1089 | 1032 | 985 | 889 |
Der Verkaufspreis soll in Abhängigkeit von der Zeit t durch die lineare Funktion p beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion p auf. Wählen Sie t = 0 für den Beginn des Jahres 2015.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, nach welcher Zeit der Rasenmähroboter gemäß der linearen Funktion p einen Verkaufspreis von € 700 hat.
[0 / 1 P.]
Aufgabe 5652
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Landung eines Flugzeugs – Aufgabe B_544
Teil c
Beim Starten und Landen eines Flugzeugs ist der sogenannte Rollwiderstandskoeffizient von Bedeutung. Der Rollwiderstandskoeffizient hängt unter anderem von der Geschwindigkeit ab. Diese wird in der Einheit Knoten angegeben. Mithilfe von Messwerten wurde die nachstehende lineare Regressionsfunktion c ermittelt.
\(c\left( v \right) = 0,00023 \cdot v + 0,01177\)
- v ... Geschwindigkeit in Knoten
- c(v) ... Rollwiderstandskoeffizient bei der Geschwindigkeit v
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viel Prozent der Rollwiderstandskoeffizient gemäß diesem Modell bei einer Geschwindigkeit von 60 Knoten größer als bei einer Geschwindigkeit von 30 Knoten ist.
[0 / 1 P.]
Für den Messwert \(M = \left( {40\left| {{y_M}} \right.} \right)\) gilt:
\(c\left( {40} \right) - {y_M} = - 0,004\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der nachstehenden Abbildung den Punkt M ein.
[0 / 1 P.]
Abbildung fehlt