BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.8
Schnittpunkte zweier Funktionsgraphen gegebenenfalls mittels Technologieeinsatz bestimmen und diese im Kontext interpretieren.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4190
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flüssigkeitsbehälter - Aufgabe A_063
Teil c
Ein Flüssigkeitsbehälter wird befüllt. Dabei kann die Flüssigkeitsmenge im Flüssigkeitsbehälter in Abhängigkeit von der Füllzeit näherungsweise durch die Funktion F beschrieben werden.
\(F\left( t \right) = 1100 - 800 \cdot {e^{ - 0,02 \cdot t}}\)
t ... Füllzeit in min
F(t) ... Flüssigkeitsmenge im Flüssigkeitsbehälter zur Füllzeit t in L
Die Gleichung \(900 = 1100 - 800 \cdot {e^{ - 0,02 \cdot t}}\) wird nach t gelöst.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die Bedeutung der Lösung im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4313
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber).
Teil a
Die nachfolgende Grafik dokumentiert näherungsweise den Verlauf des künstlichen Fiebers bei einer solchen Behandlung.
Die Funktion f beschreibt den Zusammenhang zwischen Zeit und Körpertemperatur:
\(f\left( t \right) = - 0,18 \cdot {t^3} + 0,85 \cdot {t^2} + 0,6 \cdot t + 36,6\)
- t ... Zeit in Stunden (h) mit 0 ≤ t ≤ 5
- f(t) ... Körpertemperatur zur Zeit t in °C
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie denjenigen Zeitpunkt, zu dem die Körpertemperatur 37 °C beträgt.
[1 Punkt]
Aufgabe 4392
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil c
Der Erlös aus dem Verkauf von Blumentöpfen kann durch die Funktion E beschrieben werden:
\(E\left( x \right) = 20 \cdot x - 0,12 \cdot {x^2}\)
x |
Verkaufsmenge in ME |
E(x) |
Erlös bei der Verkaufsmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das größtmögliche Intervall für x, in dem der Erlös mindestens 100 GE betragt.
[1 Punkt]