BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.5
Mit der Binomialverteilung modellieren, ihre Anwendung begründen, Wahrscheinlichkeiten und Erwartungswert berechnen und die Ergebnisse kontextbezogen interpretieren.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4002
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vergnügungspark - Aufgabe A_249
Teil c
Aus Erfahrung weiß man, dass eine bestimmte Attraktion des Vergnügungsparks von jeder Person mit der Wahrscheinlichkeit p genutzt wird. Es werden 10 Personen zufällig ausgewählt.
- Aussage 1: Genau 3 der 10 Personen nutzen die Attraktion.
- Aussage 2: Maximal 7 der 10 Personen nutzen die Attraktion.
- Aussage 3: Mindestens 7 der 10 Personen nutzen die Attraktion.
- Aussage 4: Genau 7 der 10 Personen nutzen die Attraktion.
- Aussage 5: Höchstens 3 der 10 Personen nutzen die Attraktion.
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie dasjenige Ereignis E an, für dessen Wahrscheinlichkeit gilt: \(P\left( E \right) = \left( {\begin{array}{*{20}{c}} {10}\\ 3 \end{array}} \right) \cdot {p^3} \cdot {\left( {1 - p} \right)^7}\) [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4203
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil a
Die Wahrscheinlichkeit, dass auf einem bestimmten Abschnitt der Westautobahn ein Fahrzeug mit überhöhter Geschwindigkeit unterwegs ist, beträgt 4 %. Eine Zufallsstichprobe von 1 500 Fahrzeugen wird überprüft. Die binomialverteilte Zufallsvariable X gibt die Anzahl derjenigen Fahrzeuge an, die dort mit überhöhter Geschwindigkeit unterwegs sind.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung der Wahrscheinlichkeit, dass genau a Fahrzeuge dieser Zufallsstichprobe mit überhöhter Geschwindigkeit unterwegs sind. P(X = a)
[1 Punkt]
Aufgabe 4080
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahlmöglichkeiten beim Fliegen - Aufgabe A_265
Teil b
Auf einem Flug mit Verpflegung steht auch ein vegetarisches Gericht zur Auswahl. Die Wahrscheinlichkeit, dass ein Fluggast das vegetarische Gericht wählt, betragt p. Die Wahl jedes Fluggastes wird unabhängig von jener der anderen Fluggäste getroffen. Die Wahrscheinlichkeit, dass mindestens einer der insgesamt n Fluggäste das vegetarische Gericht wählt, betragt 99 %.
- Aussage 1: \(1 - {\left( {1 - p} \right)^n} = 0,99\)
- Aussage 2: \({\left( {1 - p} \right)^n} = 0,99\)
- Aussage 3: \(1 - {\left( {1 - p} \right)^n} = 0,01\)
- Aussage 4: \(1 - {p^n} = 0,01\)
- Aussage 5: \(1 - {p^n} = 0,99\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die für diesen Zusammenhang zutreffende Gleichung an.
[1 aus 5] [1 Punkt]
Aufgabe 4218
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Psi-Tests - Aufgabe A_291
Teil a
Seit vielen Jahren hat die GWUP (Gesellschaft zur wissenschaftlichen Untersuchung von Parawissenschaften e. V.) ein Preisgeld für den Nachweis einer paranormalen (übersinnlichen) Fähigkeit ausgeschrieben. Die behaupteten Fähigkeiten einer Versuchsperson werden dabei mit verschiedenen Tests überprüft.
Eine Versuchsperson muss auf Basis ihrer paranormalen Fähigkeiten angeben, unter welcher von 10 Schachteln ein Glas Wasser versteckt ist. Der Versuch wird 13-mal durchgeführt, wobei das Glas Wasser jedes Mal neu versteckt wird. Um die Testphase zu bestehen, müssen bei 13 Durchführungen des Versuchs 7 oder mehr Treffer erzielt werden.
Es wird angenommen, dass die Versuchsperson keine paranormalen Fähigkeiten besitzt und daher bei jeder Durchführung des Versuchs mit einer Wahrscheinlichkeit von 10 % einen Treffer erzielt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Erwartungswert für die Anzahl der Treffer.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass es wahrscheinlicher ist, dass diese Versuchsperson mindestens 1 Treffer erzielt, als dass sie gar keinen Treffer erzielt.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Wahrscheinlichkeit, mit der die Versuchsperson die Testphase besteht.
[1 Punkt]
Aufgabe 4219
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Psi-Tests - Aufgabe A_291
Teil b
Eine Versuchsperson muss auf Basis ihrer paranormalen Fähigkeiten angeben, ob in einem Kabel Strom fließt oder nicht. Dieser Versuch wird 50-mal durchgeführt. Um die Testphase zu bestehen, müssen bei 50 Durchführungen des Versuchs 40 oder mehr Treffer erzielt werden.
Es wird angenommen, dass die Versuchsperson keine paranormalen Fähigkeiten besitzt und daher bei jeder Durchführung des Versuchs mit einer Wahrscheinlichkeit von 50 % einen Treffer erzielt.
- Ereignis 1: Die Versuchsperson erzielt mindestens 40 Treffer
- Ereignis 2: Die Versuchsperson erzielt höchstens 20 Treffer
- Wahrscheinlichkeit A: \(\sum\limits_{k = 20}^{50} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
- Wahrscheinlichkeit B: \(\sum\limits_{k = 0}^{20} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
- Wahrscheinlichkeit C: \(\sum\limits_{k = 0}^{40} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
- Wahrscheinlichkeit D: \(\sum\limits_{k = 40}^{50} {\left( {\begin{array}{*{20}{c}} {50}\\ k \end{array}} \right)} \cdot {0,5^k} \cdot {0,5^{50 - k}}\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Ereignissen jeweils die zutreffende Wahrscheinlichkeit aus A bis D zu.
[2 zu 4] [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4191
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil a
Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Rosa als Lieblingsfarbe nennt, beträgt 13 %. 25 zufällig ausgewählte Personen werden nach ihrer Lieblingsfarbe gefragt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass genau 3 der 25 Personen Rosa als Lieblingsfarbe nennen.
[1 Punkt]
Aufgabe 4192
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil b
Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Orange als Lieblingsfarbe nennt, beträgt 7 %. Unter n befragten Personen soll mit einer Wahrscheinlichkeit von mindestens 90 % mindestens 1 Person sein, die Orange als Lieblingsfarbe nennt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Anzahl n derjenigen Personen, die dafür mindestens befragt werden müssen.
[1 Punkt]
Aufgabe 4193
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil c
Die binomialverteilte Zufallsvariable X beschreibt die Anzahl derjenigen Personen unter 10 Befragten, die Lila als Lieblingsfarbe nennen. Die Wahrscheinlichkeitsfunktion dieser Zufallsvariablen ist in der nachstehenden Abbildung dargestellt.
Die Wahrscheinlichkeit, dass unter 10 Befragten maximal 3 Befragte Lila als Lieblingsfarbe nennen, betragt 96 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie die Wahrscheinlichkeit für die in der obigen Abbildung fehlende Säule für P(X = 2) an.
[1 Punkt]
Aufgabe 4165
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Glücksspiel - Aufgabe A_282
Bei einem Glücksspiel werden aus verschiedenen Gefäßen Kugeln zufällig gezogen.
Teil b
Im zweiten Gefäß befinden sich 6 schwarze und 2 blaue Kugeln. Aus diesem Gefäß zieht Susi 1 Kugel und legt diese Kugel anschließend in das Gefäß zurück. Das macht sie insgesamt 5-mal.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass Susi dabei genau 3-mal eine schwarze Kugel zieht.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4166
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Glücksspiel - Aufgabe A_282
Bei einem Glücksspiel werden aus verschiedenen Gefäßen Kugeln zufällig gezogen.
Teil c
Im dritten Gefäß befinden sich 12 Kugeln. 7 dieser Kugeln sind grün, die anderen Kugeln sind gelb. Aus diesem Gefäß zieht Moritz 1 Kugel und legt diese Kugel anschließend in das Gefäß zurück. Das macht er insgesamt 3-mal.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen so, dass eine korrekte Aussage entsteht.
[Lückentext] [1 Punkt]
- Aussage 1: alle 3 Kugeln sind grün
- Aussage 2: mindestens 1 Kugel grün ist
- Aussage 3: höchstens 1 Kugel grün ist
- Ausdruck 1: \(1 - {\left( {\dfrac{5}{{12}}} \right)^3}\)
- Ausdruck 2: \(1 - {\left( {\dfrac{7}{{12}}} \right)^3}\)
- Ausdruck 3: \({\left( {\dfrac{5}{{12}}} \right)^3}\)
Die Wahrscheinlichkeit, dass ___1___ , ist durch den Ausdruck ___2___gegeben.
Aufgabe 4236
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrscheine - Aufgabe A_133
Teil b
Erfahrungsgemäß wird man bei einer Fahrt mit einer bestimmten U-Bahn-Linie mit einer Wahrscheinlichkeit von 2,5 % kontrolliert. Eine Person fahrt 300-mal mit dieser U-Bahn-Linie.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Wahrscheinlichkeiten jeweils das entsprechende Ereignis aus A bis D zu. [2 zu 4] [1 Punkt]
- Wahrscheinlichkeit 1: \(\left( {\begin{array}{*{20}{c}} {300}\\ 2 \end{array}} \right) \cdot {0,975^{298}} \cdot {0,025^2}\)
- Wahrscheinlichkeit 2: \(1 - \left( {\begin{array}{*{20}{c}} {300}\\ 1 \end{array}} \right) \cdot {0,975^{299}} \cdot {0,025^1} - \left( {\begin{array}{*{20}{c}} {300}\\ 0 \end{array}} \right) \cdot {0,975^{300}} \cdot {0,025^0}\)
- Ereignis A: Die Person wird genau 2-mal kontrolliert.
- Ereignis B: Die Person wird genau 2-mal nicht kontrolliert.
- Ereignis C: Die Person wird mindestens 2-mal nicht kontrolliert.
- Ereignis D: Die Person wird mindestens 2-mal kontrolliert.
Aufgabe 4248
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sicherheit auf dem Schulweg - Aufgabe A_293
Im Nahbereich von Schulen stellen die zu- und abfahrenden Fahrzeuge ein großes Problem dar.
Teil a
Vor einer Schule werden Geschwindigkeitsmessungen durchgeführt. Es ist bekannt, dass sich Kfz-Lenker/innen mit einer Wahrscheinlichkeit von nur 26 % an das geltende Tempolimit halten.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass sich von 20 zufällig ausgewählten Kfz-Lenkerinnen und -Lenkern mehr als die Hälfte an das geltende Tempolimit hält.
[1 Punkt]