Österreichische AHS Matura - 2016.09.20 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1517
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Zahlen
Nachstehend sind Aussagen über Zahlen und Zahlenmengen angeführt
- Aussage 1: Die Quadratwurzel jeder natürlichen Zahl ist eine irrationale Zahl.
- Aussage 2: Jede natürliche Zahl kann als Bruch in der Form \(\dfrac{a}{b}\) mit \(a \in {\Bbb Z}\) und \(b \in {\Bbb Z}\backslash \left\{ 0 \right\}\) dargestellt werden
- Aussage 3: Das Produkt zweier rationaler Zahlen kann eine natürliche Zahl sein.
- Aussage 4: Jede reelle Zahl kann als Bruch in der Form \(\dfrac{a}{b}\) mit \(a \in {\Bbb Z}\) und \(b \in {\Bbb Z}\backslash \left\{ 0 \right\}\) dargestellt werden
- Aussage 5: Es gibt eine kleinste ganze Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1516
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\)
\(\begin{array}{*{20}{r}} {I:}&x& + &{4y}& = &{ - 8}&{}\\ {II:}&{ax}& + &{6y}& = &c&{{\rm{mit }}{\,\,a,c \in {\Bbb R}} } \end{array}\)
Aufgabenstellung:
Ermitteln Sie diejenigen Werte für a und c, für die das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1515
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 3. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der Ebene werden auf einer Geraden in gleichen Abständen nacheinander die Punkte A, B, C und D markiert. Es gilt also: \(\overrightarrow {AB} = \overrightarrow {BC} = \overrightarrow {CD} \)
Die Koordinaten der Punkte A und C sind bekannt. \(A = \left( {\left. 3 \right|1} \right);\,\,\,\,\,C = \left( {7\left| 8 \right.} \right)\)
Aufgabenstellung:
Berechnen Sie die Koordinaten von D!
Aufgabe 1514
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geradengleichung
Die Gerade g ist durch eine Parameterdarstellung \(g:X = \left( {\begin{array}{*{20}{c}} 2\\ 6 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 3\\ { - 5} \end{array}} \right)\) gegeben.
Aufgabenstellung:
Geben Sie mögliche Werte der Parameter a und b so an, dass die durch die Gleichung \(a \cdot x + b \cdot y = 1\) gegebene Gerade h normal zur Geraden g ist!
Aufgabe 1513
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aufwölbung des Bodensees
Aufgrund der Erdkrümmung ist die Oberfläche des Bodensees gewölbt. Wird die Erde modellhaft als Kugel mit dem Radius R = 6370 km und dem Mittelpunkt M angenommen und aus der Länge der Südost-Nordwest-Ausdehnung des Bodensees der Winkel \(\varphi = 0,5846^\circ \) ermittelt, so lässt sich die Aufwölbung des Bodensees näherungsweise berechnen.
Aufgabenstellung:
Berechnen Sie die Aufwölbung des Bodensees (siehe obige Abbildung) in Metern!
Auswölbung = h Meter
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1512
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkel bestimmen
Für einen Winkel \(\alpha \in \left[ {0^\circ ;360^\circ } \right]\) gilt: \(\sin \left( \alpha \right) = 0,4\) und \(\cos \left( \alpha \right) < 0\)
Aufgabenstellung:
Berechnen Sie den Winkel \(\alpha\) in Grad!
Aufgabe 1511
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Daten aus einem Diagramm ablesen
Ein Motorradfahrer fährt dieselbe Strecke (560 km) wie ein Autofahrer. Die beiden Bewegungen werden im nachstehenden Zeit-Weg-Diagramm modellhaft als geradlinig angenommen. Die hervorgehobenen Punkte haben ganzzahlige Koordinaten.
- Aussage 1: Der Motorradfahrer fährt drei Stunden nach der Abfahrt des Autofahrers los.
- Aussage 2: Das Motorrad hat eine Durchschnittsgeschwindigkeit von 100 km/h.
- Aussage 3: Wenn der Autofahrer sein Ziel erreicht, ist das Motorrad davon noch 120 km entfernt.
- Aussage 4: Die Durchschnittsgeschwindigkeit des Autos ist um 40 km/h niedriger als jene des Motorrads.
- Aussage 5: Die Gesamtfahrzeit des Motorradfahrers ist für diese Strecke größer als jene des Autofahrers.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die eine korrekte Interpretation des Diagramms darstellen!
Aufgabe 1510
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen und Funktionstypen
Im Folgenden sind sechs Funktionstypen angeführt, wobei die Parameter \(a,b \in {{\Bbb R}^ + }\) sind
A | \(f\left( x \right) = a \cdot {b^x}\) |
B | \(f\left( x \right) = a \cdot {x^{\dfrac{1}{2}}}\) |
C | \(f\left( x \right) = a \cdot \dfrac{1}{{{x^2}}}\) |
D | \(f\left( x \right) = a \cdot {x^2} + b\) |
E | \(f\left( x \right) = a \cdot {x^3}\) |
F | \(f\left( x \right) = a \cdot x + b\) |
Weiters sind die Graphen von vier Funktionen dargestellt.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen 1, 2, 3 und 4 jeweils den entsprechenden Funktionstyp (aus A bis F) zu!
Aufgabe 1509
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 9. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgleichung einer linearen Funktion
Gegeben ist eine lineare Funktion f mit folgenden Eigenschaften:
- Wenn das Argument x um 2 zunimmt, dann nimmt der Funktionswert f(x) um 4 ab.
- f(0)=1
Aufgabenstellung:
Geben Sie eine Funktionsgleichung dieser linearen Funktion an
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1508
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion vom Grad n
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f. Alle charakteristischen Punkte des Graphen (Schnittpunkte mit den Achsen, Extrempunkte, Wendepunkte) sind in dieser Abbildung enthalten.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die Polynomfunktion f ist vom Grad___1___ , weil f genau ___2___ hat.
1 | |
\(n < 3\) | A |
\(n = 3\) | B |
\(n > 3\) | C |
2 | |
eine Extremstelle | I |
zwei Wendestellen | II |
zwei Nullstellen | III |
Aufgabe 1507
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bienenbestand
Wegen eines Umweltgifts nimmt der Bienenbestand eines Imkers täglich um einen fixen Prozentsatz ab. Der Imker stellt fest, dass er innerhalb von 14 Tagen einen Bestandsverlust von 50 % erlitten hat.
Aufgabenstellung:
Berechnen Sie den täglichen relativen Bestandsverlust in Prozent!
Aufgabe 1506
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodische Funktion
Gegeben ist die periodische Funktion f mit der Funktionsgleichung \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Geben Sie die kleinste Zahl a > 0 (Maßzahl für den Winkel in Radiant) so an, dass für alle \(x \in {\Bbb R}\) die Gleichung \(f\left( {x + a} \right) = f\left( x \right)\) gilt!