AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 5.5
Aufgaben zum Inhaltsbereich FA 5.5: Die Begriffe Halbwertszeit und Verdoppelungszeit kennen, die entsprechenden Werte berechnen und im Kontext deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 5.5
Exponentialfunktion
\(\eqalign{ & f\left( x \right) = a \cdot {b^x} \cr & f\left( x \right) = a \cdot {e^{\lambda \cdot x}} \cr & {\text{mit: a}}{\text{,b}} \in {{\Bbb R}^ + },\,\,\lambda \in {\Bbb R} \cr}\)
FA 5.5: Die Begriffe Halbwertszeit und Verdoppelungszeit kennen, die entsprechenden Werte berechnen und im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 1600
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeiten
Die nachstehenden Abbildungen zeigen die Graphen von Exponentialfunktionen, die jeweils die Abhängigkeit der Menge einer radioaktiven Substanz von der Zeit beschreiben. Dabei gibt M(t) die Menge (in mg) zum Zeitpunkt t (in Tagen) an.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
- Aussage 1: 1 Tag
- Aussage 2: 2 Tage
- Aussage 3: 3 Tage
- Aussage 4: 5 Tage
- Aussage 5: 10 Tage
- Aussage 6: mehr als 10 Tage
Aufgabenstellung:
Ordnen Sie den vier Graphen jeweils die entsprechende Halbwertszeit (aus A bis F) zu!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1142
AHS - 1_142 & Lehrstoff: FA 5.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verdoppelungszeit
Die unten stehende Abbildung zeigt den Graphen einer Exponentialfunktion f mit \(f\left( t \right) = a \cdot {b^t}\)
Aufgabenstellung:
Bestimmen Sie mithilfe des Graphen die Größe der Verdoppelungszeit!
Aufgabe 1138
AHS - 1_138 & Lehrstoff: FA 5.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit eines Isotops
Der radioaktive Zerfall des Iod-Isotops \({}^{131}I\) verhält sich gemäß der Funktion N mit \(N\left( t \right) = N\left( 0 \right) \cdot {e^{ - 0,086 \cdot t}}\) mit t in Tagen.
- Aussage 1: \(\ln \left( {\dfrac{1}{2}} \right) = - 0,086 \cdot t \cdot \ln \,\,\,e\)
- Aussage 2: \(2 = {e^{ - 0,086 \cdot t}}\)
- Aussage 3: \(N\left( 0 \right) = \dfrac{{N\left( 0 \right)}}{2} \cdot {d^{ - 0,086 \cdot t}}\)
- Aussage 4: \(\ln \left( {\dfrac{1}{2}} \right) = - \ln 0,086 \cdot t \cdot e\)
- Aussage 5: \(\dfrac{1}{2} = 1 \cdot {e^{ - 0,086 \cdot t}}\)
Aufgabenstellung
Kreuzen Sie diejenige(n) Gleichung(en) an, mit der/denen die Halbwertszeit des Isotops in Tagen berechnet werden kann!
Aufgabe 1155
AHS - 1_155 & Lehrstoff: FA 5.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit von Felbamat
Zur Behandlung von Epilepsie wird oft der Arzneistoff Felbamat eingesetzt. Nach der Einnahme einer Ausgangsdosis D0 nimmt die Konzentration D von Felbamat im Körper näherungsweise exponentiell mit der Zeit ab. Für D gilt folgender funktionaler Zusammenhang: \(D\left( t \right) = {D_0} \cdot {0,9659^t}\) Dabei wird die Zeit t in Stunden gemessen.
Aufgabenstellung:
Berechnen Sie die Halbwertszeit von Felbamat! Geben Sie die Lösung auf Stunden gerundet an!
Aufgabe 1554
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit von Cobalt-60
Das radioaktive Isotop Cobalt-60 wird unter anderem zur Konservierung von Lebensmitteln und in der Medizin verwendet. Das Zerfallsgesetz für Cobalt-60 lautet \(N\left( t \right) = {N_0} \cdot {e^{ - 0,13149 \cdot t}}\) mit t in Jahren. Dabei bezeichnet N0 die vorhandene Menge des Isotops zum Zeitpunkt t = 0 und N(t) die vorhandene Menge zum Zeitpunkt t ≥ 0.
Aufgabenstellung
Berechnen Sie die Halbwertszeit von Cobalt-60!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1576
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dicke einer Bleischicht
Die Intensität elektromagnetischer Strahlung nimmt bei Durchdringung eines Körpers exponentiell ab. Die Halbwertsdicke eines Materials ist diejenige Dicke, nach deren Durchdringung die Intensität der Strahlung auf die Hälfte gesunken ist. Die Halbwertsdicke von Blei liegt für die beobachtete Strahlung bei 0,4 cm.
Aufgabenstellung:
Bestimmen Sie diejenige Dicke d, die eine Bleischicht haben muss, damit die Intensität auf 12,5 % der ursprünglichen Intensität gesunken ist!
d= ? cm
Aufgabe 1744
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verzinsung
Ein Kapital K0 wird auf einem Sparbuch mit 1 % p. a. (pro Jahr) verzinst. Für die nachstehende Aufgabenstellung gilt die Annahme, dass allfällige Steuern oder Gebühren nicht gesondert berücksichtigt werden müssen und dass keine weiteren Einzahlungen oder Auszahlungen erfolgen.
Aufgabenstellung:
Berechnen Sie, in wie vielen Jahren sich das Kapital K0 bei gleichbleibendem Zinssatz verdoppelt. [0 / 1 Punkt]
Aufgabe 1411
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Technetium
Für eine medizinische Untersuchung wird das radioaktive Isotop \({}_{43}^{99m}TC\) (Technetium) künstlich hergestellt. Dieses Isotop hat eine Halbwertszeit von 6,01 Stunden.
Aufgabenstellung:
Geben Sie an, wie lange es dauert, bis von einer bestimmten Ausgangsmenge Technetiums nur noch ein Viertel vorhanden ist!
Aufgabe 1303
AHS - 1_303 & Lehrstoff: FA 5.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Biologische Halbwertszeit
Die biologische Halbwertszeit bezeichnet diejenige Zeitspanne, in der in einem biologischen Organismus (Mensch, Tier …) der Gehalt von zum Beispiel einem Arzneimittel ausschließlich durch biologische Prozesse (Stoffwechsel, Ausscheidung usw.) auf die Hälfte abgesunken ist. Für das Arzneimittel Penicillin G wird bei Erwachsenen eine biologische Halbwertszeit von 30 Minuten angegeben.
Aufgabenstellung
Einer Person wird um 10:00 Uhr eine Dosis Penicillin G verabreicht. Ermitteln Sie, wie viel Prozent der ursprünglichen Dosis vom Körper der Person bis 11:00 Uhr noch nicht verarbeitet wurden!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1507
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bienenbestand
Wegen eines Umweltgifts nimmt der Bienenbestand eines Imkers täglich um einen fixen Prozentsatz ab. Der Imker stellt fest, dass er innerhalb von 14 Tagen einen Bestandsverlust von 50 % erlitten hat.
Aufgabenstellung:
Berechnen Sie den täglichen relativen Bestandsverlust in Prozent!
Aufgabe 1649
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit
Die Masse m(t) einer radioaktiven Substanz kann durch eine Exponentialfunktion m in Abhängigkeit von der Zeit t beschrieben werden. Zu Beginn einer Messung sind 100 mg der Substanz vorhanden, nach vier Stunden misst man noch 75 mg dieser Substanz.
Aufgabenstellung:
Bestimmen Sie die Halbwertszeit tH dieser radioaktiven Substanz in Stunden!
Aufgabe 1768
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Anzahl von Tieren
Man nimmt an, dass sich die Anzahl der Tiere einer bestimmten Tierart auf der Erde um 1,8 % pro Jahr erhöht.
Aufgabenstellung:
Bestimmen Sie diejenige Zeitdauer in Jahren, innerhalb der sich die Anzahl der Tiere dieser Tierart auf der Erde verdoppelt.
Zeitdauer: ca. Jahre