AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 2.5
Aufgaben zum Inhaltsbereich AG 2.5: Lineare Gleichungssysteme in zwei Variablen aufstellen, interpretieren, umformen/lösen, über Lösungsfälle Bescheid wissen, Lösungen und Lösungsfälle (auch geometrisch) deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.5
(Un-)Gleichungen und Gleichungssysteme
AG 2.5: Lineare Gleichungssysteme in zwei Variablen aufstellen, interpretieren, umformen/lösen, über Lösungsfälle Bescheid wissen, Lösungen und Lösungsfälle (auch geometrisch) deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
In dieser Übungseinheit lernst du bisherige österreichische AHS Typ I Maturabeispiele zum Themenbereich „Lineare Gleichungssysteme (LGS)“ kennen.
Folgendes musste man für die bisherigen Beispiele wissen:
- Jede lineare Gleichung lässt sich als Gerade vom Typ \(y = k \cdot x + d\) darstellen. Da die Gleichungen linear sind, kommen nur Potenzen 1. Grades vor, also keine Quadrate oder höhere Potenzen.
- Lineare Gleichungssysteme (LGS) in zwei Variablen bedeutet, dass zwei lineare Gleichungen vorliegen, die sich jeweils als Gerade darstellen lassen, wobei wir zwischen expliziter und impliziter Darstellung unterscheiden können
\(\eqalign{
& {\text{Gl}}{\text{.1: }}y = {k_1} \cdot x + {d_1} \buildrel \wedge \over =
\to{=} {a_1} \cdot x + {b_1} \cdot y = {c_1} \cr
& {\text{Gl}}{\text{.2: }}y = {k_2} \cdot x + {d_2} \buildrel \wedge \over =
\to{=} {a_2} \cdot x + {b_2} \cdot y = {c_2} \cr
& {k_{i = 1,2}} = - \dfrac{{{a_i}}}{{{b_i}}};\,\,\,\,\,{d_{i = 1,2}} = \dfrac{{{c_i}}}{{{b_i}}} \cr} \)-
- Gibt es für ein lineares Gleichungssystem in zwei Variablen nur 1 Gleichung, ist das Gleichungssystem unterbestimmt, gibt es mehr als 2 Gleichungen, so ist das Gleichungssystem überbestimmt.
- Ein sinnvoll lösbares LGS in zwei Variablen wird immer aus 2 Gleichungen bestehen, für die es folgende 3 Lösungsmöglichkeiten gibt: unendlich viele Lösungen, eine Lösung oder keine Lösung. Nachfolgend eine geometrische Interpretation dafür:
- Lagebeziehung zweier Geraden, die in einer Ebene liegen
- Zwei Geraden sind identisch, wenn sie dieselbe Steigung k und denselben Ordinatenabschnitt d aufweisen. In diesem Fall sind die beiden Geraden deckungsgleich und es muss folgender Zusammenhang für einen konstanten Faktor Lambda für die beiden implizite Geradengleichungen gelten
\(\eqalign{
& {a_1} \cdot \lambda = {a_2} \cr
& {b_1} \cdot \lambda = {b_2} \cr
& {c_1} \cdot \lambda = {c_2} \cr} \) -
- Zwei Gerade haben einen Schnittpunkt, wenn sie unterschiedliche Steigungen aufweisen
- Zwei Gerade sind parallel, wenn sie dieselbe Steigung k aber unterschiedliche Ordinatenabschnitt d aufweisen Da man für parallele Gerade keinen Schnittpunkt angeben kann, ist ihre Lösungsmenge die leere Menge.
- Beim Additionsverfahren (Methode gleicher Koeffizienten) werden im 1. Schritt durch äquivalentes Umformen die Koeffizienten einer Variablen bis auf entgegengesetzte Vorzeichen gleich gemacht. Danach werden im 2. Schritt die Gleichungen addiert, wodurch die Variable wegfällt, deren Koeffizienten man zuvor gleich gemacht hat. Was bleibt ist eine Gleichung in einer Variablen, die man dadurch löst, dass man die verbliebene Variable explizit macht.
- Beim Substitutionsverfahren (Einsetzungsmethode) wird eine der Gleichungen nach einer Variablen aufgelöst, d.h. diese Variable wird explizit gemacht. Der so entstandene Term wird in die andere Gleichung eingesetzt, wodurch diese Gleichung nur mehr eine Variable enthält und lösbar wird.
- Beim Eliminationsverfahren (Gleichsetzungsmethode) werden beide Gleichungen nach derselben Variablen (x) aufgelöst. Danach werden die erhaltenen Terme gleichgesetzt, wodurch die Variable (x) nach der explizit gemacht wurde, verschwindet und nur mehr eine Gleichung in der verbleibenden Variablen (y) überbleibt.
- Koeffizientenvergleich zur Lösung von LGS: Einem linearen Gleichungssysteme (LGS) in zwei Variablen entsprechen zwei lineare Gleichungen, die sich jeweils als Gerade darstellen lassen. Hat man die zusätzliche Information, dass die beiden Geraden 1) ident oder 2) parallel sind, so kann man durch Koeffizientenvergleich 1) die k und d Werte, bzw. 2) den k Wert aus der einen Gleichung für die andere Gleichung herleiten.
-
Enthaltene Beispiele findest du, indem du die Aufgabennummer in den Suchslot eingibst
1 |
Aufgabe 1394 |
AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 4. Aufgabe |
2 |
Aufgabe 1444 |
AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 2. Aufgabe |
3 |
Aufgabe 1467 |
AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 3. Aufgabe |
4 |
Aufgabe 1516 |
AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 2. Aufgabe |
5 |
Aufgabe 1563 |
AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 3. Aufgabe |
6 |
Aufgabe 1568 |
AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 3. Aufgabe |
7 |
Aufgabe 1664 |
AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 3. Aufgabe |
8 |
Aufgabe 1711 |
AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 2. Aufgabe |
9 |
Aufgabe 1832 |
AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 3. Aufgabe |
10 |
Aufgabe 1881 |
AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 4. Aufgabe |
11 |
Aufgabe 11270 |
AHS Matura vom 03. Mai 2023 - Teil-1-Aufgaben - 3. Aufgabe |
12 |
Aufgabe 11294 |
AHS Matura vom 19. September 2023 - Teil-1-Aufgaben - 3. Aufgabe |
13 |
Aufgabe 11318 |
AHS Matura vom 10. Jänner 2024 - Teil-1-Aufgaben - 3. Aufgabe |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 1205
AHS - 1_205 & Lehrstoff: AG 2.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösung eines Gleichungssystems
Gegeben ist ein Gleichungssystem mit den Unbekannten a und b:
\(\begin{array}{*{20}{r}} {I:}&{8a}& - &{3b}& = &{10}\\ {II:}&{}&{}&b& = &{2a - 1} \end{array}\)
Aufgabenstellung:
Lösen Sie das angegebene Gleichungssystem!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1467
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\)
\(\eqalign{ & 2x + 3y = 7 \cr & 3x + by = c \cr & {\text{mit }}b,c \in {\Bbb R} \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ermitteln Sie diejenigen Werte für b und c, für die das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1204
AHS - 1_204 & Lehrstoff: AG 2.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssysteme
Gegeben sind Aussagen über die Lösbarkeit von verschiedenen linearen Gleichungssystemen mit zwei Unbekannten x und y.
- Aussage 1: \(\begin{array}{*{20}{r}} {I:}&x& + &y& = &2\\ {II:}&x& - &{4y}& = &2 \end{array}\) hat genau eine Lösung
- Aussage 2: \(\begin{array}{*{20}{r}} {I:}&{ - x}& + &{4y}& = &{ - 2}\\ {II:}&x& - &{4y}& = &2 \end{array}\) hat unendlich viele Lösungen
- Aussage 3: \(\begin{array}{*{20}{r}} {I:}&x& + &y& = &{62}\\ {II:}&x& - &{4y}& = &{ - 43} \end{array}\) hat genau zwei Lösungen
- Aussage 4: \(\begin{array}{*{20}{r}} {I:}&x& + &y& = &1\\ {II:}&{ - x}& + &y& = &2 \end{array}\) hat genau eine Lösung
- Aussage 5: \(\begin{array}{*{20}{r}} {I:}&x& + &y& = &{62}\\ {II:}&x& + &y& = &{ - 43} \end{array}\) hat keine Lösung
Aufgabenstellung
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1394
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineares Gleichungssystem
Gegeben ist das folgende lineare Gleichungssystem über der Grundmenge \(G = {\Bbb N} \times {\Bbb N}\):
\(\begin{array}{*{20}{r}} {I:}&{2x}& + &y& = &6\\ {II:}&{3x}& - &y& = &{ - 3} \end{array}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie die Lösungsmenge des Gleichungssystems über der Grundmenge G an!
Aufgabe 1444
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Eine Teilmenge der Lösungsmenge einer linearen Gleichung wird durch die nachstehende Abbildung dargestellt. Die durch die Gleichung beschriebene Gerade g verlauft durch die Punkte P1 und P2, deren Koordinaten jeweils ganzzahlig sind.
Die lineare Gleichung für g und eine zweite lineare Gleichung (h1, oder h2 oder h3) bilden ein lineares Gleichungssystem.
- Satzteil 1_1: \({h_1}:{\text{ }}2x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}1\)
- Satzteil 1_1: \({h_2}:{\text{ }}x{\text{ }} + {\text{ }}2y{\text{ }} = {\text{ }}8\)
- Satzteil 1_1: \({{\text{h}}_3}{\text{: y = 5}}\)
- Satzteil 2_1: hat das Gleichungssystem unendlich viele Lösungen
- Satzteil 2_2: ist die Lösungsmenge des Gleichungssystems \(L = \left\{ {\left( { - 2\left| 4 \right.} \right)} \right\}\)
- Satzteil 2_3: hat das Gleichungssystem keine Lösung
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Hat die zweite lineare Gleichung die Form __1___, so ___2__
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1203
AHS - 1_203 & Lehrstoff: AG 2.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem ohne Lösung
Gegeben ist ein Gleichungssystem mit den Unbekannten a und b:
\(\begin{array}{*{20}{r}} {I:}&{5 \cdot a}& - &{4 \cdot b}& = &9\\ {II:}&{c \cdot a}& + &{8 \cdot b}& = &d \end{array}\)
Aufgabenstellung:
Bestimmen Sie alle Werte der Parameter c und d so, dass das Gleichungssystem keine Lösung besitzt!
Aufgabe 1568
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 3. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Projektwoche
An einer Projektwoche nehmen insgesamt 25 Schüler/innen teil. Die Anzahl der Mädchen wird mit x bezeichnet, die Anzahl der Burschen mit y. Die Mädchen werden in 3-Bett-Zimmern untergebracht, die Burschen in 4-Bett-Zimmern, insgesamt stehen 7 Zimmer zur Verfügung. Die Betten aller 7 Zimmer werden belegt, es bleiben keine leeren Betten übrig.
- Aussage 1: \(x + y = 7\)
- Aussage 2: \(x + y = 25\)
- Aussage 3: \(3 \cdot x + 4 \cdot y = 7\)
- Aussage 4: \(\dfrac{x}{3} + \dfrac{y}{4} = 7\)
- Aussage 5: \(\dfrac{x}{3} + \dfrac{y}{4} = 25\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Mithilfe eines Gleichungssystems aus zwei der nachstehenden Gleichungen kann die Anzahl der Mädchen und die Anzahl der Burschen berechnet werden. Kreuzen Sie die beiden zutreffenden Gleichungen an!
Aufgabe 1516
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\)
\(\begin{array}{*{20}{r}} {I:}&x& + &{4y}& = &{ - 8}&{}\\ {II:}&{ax}& + &{6y}& = &c&{{\rm{mit }}{\,\,a,c \in {\Bbb R}} } \end{array}\)
Aufgabenstellung:
Ermitteln Sie diejenigen Werte für a und c, für die das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1563
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Futtermittel
Ein Bauer hat zwei Sorten von Fertigfutter für die Rindermast gekauft. Fertigfutter A hat einen Proteinanteil von 14 %, während Fertigfutter B einen Proteinanteil von 35 % hat. Der Bauer möchte für seine Jungstiere 100 kg einer Mischung dieser beiden Fertigfutter-Sorten mit einem Proteinanteil von 18 % herstellen. Es sollen a kg der Sorte A mit b kg der Sorte B gemischt werden.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie zwei Gleichungen in den Variablen a und b an, mithilfe derer die für diese Mischung benötigten Mengen berechnet werden können!
- 1. Gleichung:
- 2. Gleichung:
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1664
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\).
\(\eqalign{ & Gl.1:a \cdot x + y = - 2{\text{ mit }}a \in {\Bbb R} \cr & Gl.2:3 \cdot x + b \cdot y = 6{\text{ mit }}b \in {\Bbb R} \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie die Koeffizienten a und b so, dass das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1711
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineares Gleichungssystem
Gegeben ist ein lineares Gleichungssystem in den Variablen x1 und x2. Es gilt: a, b ∈ ℝ.
\(\begin{array}{l} 3 \cdot {x_1} - 4 \cdot {x_2} = a\\ b \cdot {x_1} + {x_2} = a \end{array}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie die Werte der Parameter a und b so, dass für die Lösungsmenge des Gleichungssystems \(L = \left\{ {\left( {2; - 2} \right)} \right\}\) ist!
Aufgabe 1832
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schulsportwoche
Für eine Schulsportwoche bucht eine Schule in einem Jugendgästehaus x Vierbettzimmer und y Sechsbettzimmer. Alle gebuchten Zimmer werden vollständig belegt.
Die Buchung kann durch das nachstehende Gleichungssystem beschrieben werden.
\(\begin{array}{l} I:\,\,\,\,4 \cdot x + 6 \cdot y = 56\\ II:\,\,\,x + y = 12 \end{array}\)
- Aussage 1: Es werden genau 4 Vierbettzimmer und genau 6 Sechsbettzimmer gebucht.
- Aussage 2: Es werden weniger Vierbettzimmer als Sechsbettzimmer gebucht.
- Aussage 3: Es werden genau 12 Zimmer gebucht.
- Aussage 4: Es werden Betten für genau 56 Personen gebucht.
- Aussage 5: Es werden genau 10 Zimmer gebucht.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an. [2 aus 5]