AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 1.1
Aufgaben zum Inhaltsbereich AG 1.1: Wissen über die Zahlenmengen ℕ, ℤ, ℚ, ℝ, ℂ verständig einsetzen können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 1.1
Grundbegriffe der Algebra
AG 1.1: Wissen über die Zahlenmengen, -bereiche ℕ, ℤ, ℚ, ℝ, ℂ verständig einsetzen können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
In dieser Übungseinheit lernst du bisherige österreichische AHS Typ I Maturabeispiele zum Themenbereich „Standard-Zahlenmengen“ kennen.
Die einzelnen Mengen bauen aufeinander auf, wobei jede Zahlenmenge in der nächstgrößeren Zahlenmenge vollkommen enthalten ist. Alle Zahlen gehören einer oder mehreren der nachfolgenden Standard-Zahlenmengen an.
\(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}\)
Natürliche Zahlen
\(\mathbb{N} = \left\{ {0,1,2,3,...} \right\}\)
Null, sowie alle positiven ganzen Zahlen (Äpfel im Korb). Beachte: \(0,\mathop 9\limits^ \bullet = 1 \in N\)
Ganze Zahlen
\(\mathbb{Z} = \left\{ {..., - 2, - 1,0,1,2,...} \right\}\)
Alle positiven und negativen ganzen Zahlen (Temperatur)
Rationale Zahlen
\(\mathbb{Q} = \left\{ {\dfrac{p}{q}\,\,\left| {p \in \mathbb{Z},\,q \in {\mathbb{N}^{{\text{ ohne }}0}}} \right.} \right\}\)
Alle positiven oder negativen Zahlen, die sich als Quotient (als Bruch) darstellen lassen, wobei sowohl im Zähler als auch im Nenner ganze Zahlen stehen. Umgekehrt können diese Brüche wiederum durch Division des Zählers durch den Nenner, als endliche oder als periodische Dezimalzahlen dargestellt werden.
Irrationale Zahlen
\(\mathbb{I} = \dfrac{\mathbb{R}}{\mathbb{Q}}\)
Alle positiven und negativen Kommazahlen, die grundsätzlich nicht als Bruch mit ganzen Zahlen im Zähler und im Nenner dargestellt werden können, wie \(\sqrt 2 ,\,\pi \).
(Anmerkung: Als allgemeinen Bruch kann man sie schon darstellen: \(\pi = \dfrac{\pi }{1}\)
Reelle Zahlen
\(\mathbb{R} = \mathbb{Q} \cup \mathbb{I}\)
Die Summe aus den rationalen und irrationalen Zahlen. Bilden den Realteil der komplexen Zahlen. (Technik)
Imaginäre Zahlen
\(ib\)
Eine komplexe Zahl, deren Realteil null ist, zugleich eine komplexe Zahl, deren Quadrat eine nicht positive reelle Zahl ist. Die imaginären Zahlen bilden den Imaginärteil einer komplexen Zahl.
Komplexe Zahlen
\(\mathbb{C} = \left\{ {z = a + ib\,\,\left| {a,b \in \mathbb{R},\,{i^2} = - 1} \right.} \right\}\)
Zahlenpaare, die sich aus einem Real- und einem Imaginärteil zusammensetzen und die nicht mehr nur am gaußschen Zahlenstrahl, sondern in der gaußschen Ebene liegen.
Enthaltene Beispiele findest du, indem du die Aufgabennummer in den Suchslot eingibst
1 |
Aufgabe 1349 |
AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 1. Aufgabe |
2 |
Aufgabe 1373 |
AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 1. Aufgabe |
3 |
Aufgabe 1397 |
AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 1. Aufgabe |
4 |
Aufgabe 1469 |
AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 1. Aufgabe |
5 |
Aufgabe 1493 |
AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 1. Aufgabe |
6 |
Aufgabe 1517 |
AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 1. Aufgabe |
7 |
Aufgabe 1565 |
AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 1. Aufgabe |
8 |
Aufgabe 1566 |
AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 1. Aufgabe |
9 |
Aufgabe 1638 |
AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 1. Aufgabe |
10 |
Aufgabe 1662 |
AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 1. Aufgabe |
11 |
Aufgabe 1686 |
AHS Matura vom 08. Mai 2019 - Teil-1-Aufgaben - 1. Aufgabe |
12 |
Aufgabe 1710 |
AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 1. Aufgabe |
13 |
Aufgabe 1758 |
AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 1. Aufgabe |
14 |
Aufgabe 1782 |
AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 1. Aufgabe |
15 |
Aufgabe 1854 |
AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 1. Aufgabe |
16 |
Aufgabe 1878 |
AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 1. Aufgabe |
17 |
Aufgabe 11220 |
AHS Matura vom 20. September 2022 - Teil-1-Aufgaben - 1. Aufgabe |
18 |
Aufgabe 11244 |
AHS Matura vom 11. Jänner 2023 - Teil-1-Aufgaben - 1. Aufgabe |
19 |
Aufgabe 11268 |
AHS Matura vom 03. Mai 2023 - Teil-1-Aufgaben - 1. Aufgabe |
20 |
Aufgabe 11292 |
AHS Matura vom 19. September 2023 - Teil-1-Aufgaben - 1. Aufgabe |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1052
AHS - 1_052 & Lehrstoff: AG 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganze Zahlen
Gegeben sind fünf Zahlen
- Aussage 1: \(\dfrac{{25}}{5}\)
- Aussage 2: \( - \,\,\,\sqrt[3]{8}\)
- Aussage 3: \(0,\mathop 4\limits^ \bullet \)
- Aussage 4: \(1,4 \cdot {10^{ - 3}}\)
- Aussage 5: \( - 1,4 \cdot {10^3}\)
Aufgabenstellung:
Kreuzen Sie diejenige(n) Zahl(en) an, die aus der Zahlenmenge ℤ ist/sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1069
AHS - 1_069 & Lehrstoff: AG 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Zahlen
Gegeben sind 5 Zahlen
- Aussage 1: \(0,4\)
- Aussage 2: \(\sqrt { - 8}\)
- Aussage 3: \(\dfrac{\pi }{5}\)
- Aussage 4: \(0\)
- Aussage 5: \({e^2}\)
Aufgabenstellung:
Kreuzen Sie diejenigen beiden Zahlen an, die aus der Zahlenmenge ℚ sind!
Aufgabe 1129
AHS - 1_129 & Lehrstoff: AG 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Zahlen
Gegeben sind folgende Zahlen:
- Aussage 1: \( - \dfrac{1}{2}\)
- Aussage 2: \(\dfrac{\pi }{5}\)
- Aussage 3: \(3,\mathop 5\limits^ \bullet \)
- Aussage 4: \(\sqrt 3\)
- Aussage 5: \( - \sqrt {16}\)
Aufgabenstellung:
Kreuzen Sie diejenige(n) Zahl(en) an, die rational ist/sind!
Aufgabe 1349
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Positive rationale Zahlen
Gegeben ist die Zahlenmenge ℚ+.
- Aussage 1: \(\sqrt 5\)
- Aussage 2: \(0,9 \cdot {10^{ - 3}}\)
- Aussage 3: \(\sqrt {0,01}\)
- Aussage 4: \(\dfrac{\pi }{4}\)
- Aussage 5: \(- 1,41 \cdot {10^3}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie jene beiden Zahlen an, die Elemente dieser Zahlenmenge sind!
Aufgabe 1397
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlen den Zahlenmengen zuordnen
Gegeben sind Aussagen zu Zahlen.
- Aussage 1: Die Zahl \(- \dfrac{1}{3}\) liegt in ℤ, aber nicht in ℕ.
- Aussage 2: Die Zahl \(\sqrt { - 4}\) liegt in ℂ.
- Aussage 3: Die Zahl \(0,\mathop 9\limits^ \bullet\) liegt in ℚ und in ℝ.
- Aussage 4: Die Zahl \(\pi\) liegt in ℝ.
- Aussage 5: Die Zahl \(- \sqrt 7\) liegt nicht in ℝ.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1469
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über Zahlen
Gegeben sind Aussagen über Zahlen.
- Aussage 1: Jede reelle Zahl ist eine irrationale Zahl.
- Aussage 2: Jede reelle Zahl ist eine komplexe Zahl.
- Aussage 3: Jede rationale Zahl ist eine ganze Zahl.
- Aussage 4: Jede ganze Zahl ist eine natürliche Zahl.
- Aussage 5: Jede natürliche Zahl ist eine reelle Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Welche der im Folgenden angeführten Aussagen gelten? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1493
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Menge von Zahlen
Die Menge \(M = \left\{ {x \in {\Bbb Q}\left| {2 < x < 5} \right.} \right\}\) ist eine Teilmenge der rationalen Zahlen
- Aussage 1: 4,99 ist die größte Zahl, die zur Menge M gehört.
- Aussage 2: Es gibt unendlich viele Zahlen in der Menge M, die kleiner als 2,1 sind.
- Aussage 3: Jede reelle Zahl, die größer als 2 und kleiner als 5 ist, ist in der Menge M enthalten.
- Aussage 4: Alle Elemente der Menge M können in der Form \(\dfrac{a}{b}\) geschrieben werden, wobei a und b ganze Zahlen sind und b ≠ 0 ist.
- Aussage 5: Die Menge M enthält keine Zahlen aus der Menge der komplexen Zahlen.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1517
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Zahlen
Nachstehend sind Aussagen über Zahlen und Zahlenmengen angeführt
- Aussage 1: Die Quadratwurzel jeder natürlichen Zahl ist eine irrationale Zahl.
- Aussage 2: Jede natürliche Zahl kann als Bruch in der Form \(\dfrac{a}{b}\) mit \(a \in {\Bbb Z}\) und \(b \in {\Bbb Z}\backslash \left\{ 0 \right\}\) dargestellt werden
- Aussage 3: Das Produkt zweier rationaler Zahlen kann eine natürliche Zahl sein.
- Aussage 4: Jede reelle Zahl kann als Bruch in der Form \(\dfrac{a}{b}\) mit \(a \in {\Bbb Z}\) und \(b \in {\Bbb Z}\backslash \left\{ 0 \right\}\) dargestellt werden
- Aussage 5: Es gibt eine kleinste ganze Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1565
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganze Zahlen
Es sei a eine positive ganze Zahl.
- Aussage 1: \({a^{ - 1}}\)
- Aussage 2: \({a^2}\)
- Aussage 3: \({a^{\dfrac{1}{2}}} \)
- Aussage 4: \(3 \cdot a\)
- Aussage 5: \(\dfrac{a}{2}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Welche der obenstehenden Ausdrucke ergeben für a ∈ ℤ+ stets eine ganze Zahl? Kreuzen Sie die beiden zutreffenden Ausdrücke an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1566
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlenmengen
Untenstehend werden Aussagen über Zahlen aus den Zahlenmengen \({\Bbb N},{\Bbb Z},{\Bbb Q},{\Bbb R}{\text{ und }}{\Bbb C}\) getroffen.
- Aussage 1: Jede reelle Zahl ist eine rationale Zahl.
- Aussage 2: Jede natürliche Zahl ist eine rationale Zahl.
- Aussage 3: Jede ganze Zahl ist eine reelle Zahl.
- Aussage 4: Jede rationale Zahl ist eine reelle Zahl.
- Aussage 5: Jede komplexe Zahl ist eine reelle Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1638
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 1. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlenmengen
Nachstehend sind Aussagen über Zahlen aus den Mengen \({\Bbb Z},{\Bbb Q},{\Bbb R},{\Bbb C}\) angeführt.
- Aussage 1: Irrationale Zahlen lassen sich in der Form \(\dfrac{a}{b}\) mit a, b ∈ ℤ und b ≠ 0 darstellen
- Aussage 2: Jede rationale Zahl kann in endlicher oder periodischer Dezimalschreibweise geschrieben werden.
- Aussage 3: Jede Bruchzahl ist eine komplexe Zahl.
- Aussage 4: Die Menge der rationalen Zahlen besteht ausschließlich aus positiven Bruchzahlen.
- Aussage 5: Jede reelle Zahl ist auch eine rationale Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1373
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über Zahlenmengen
Untenstehend sind fünf Aussagen über Zahlen aus den Zahlenmengen \(\mathbb{N},\mathbb{Z},\mathbb{Q}{\text{ und }}\mathbb{R}\) angeführt.
- Aussage 1: Reelle Zahlen mit periodischer oder endlicher Dezimaldarstellung sind rationale Zahlen.
- Aussage 2: Die Differenz zweier natürlicher Zahlen ist stets eine natürliche Zahl.
- Aussage 3: Alle Wurzelausdrücke der Form \(\sqrt a {\text{ mit }}a \in {\Bbb R}{\text{ und }}a > 0\) sind stets irrationale Zahlen
- Aussage 4: Zwischen zwei verschiedenen rationalen Zahlen a, b existiert stets eine weitere rationale Zahl.
- Aussage 5: Der Quotient zweier negativer ganzer Zahlen ist stets eine positive ganze Zahl.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden Aussagen an, die korrekt sind!