AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 4.1
Aufgaben zum Inhaltsbereich AG 4.1: Definitionen von Sinus, Cosinus und Tangens im rechtwinkeligen Dreieck kennen und zur Auflösung rechtwinkeliger Dreiecke einsetzen können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 4.1
Trigonometrie
AG 4.1: Definitionen von Sinus, Cosinus und Tangens im rechtwinkeligen Dreieck kennen und zur Auflösung rechtwinkeliger Dreiecke einsetzen können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 1221
AHS - 1_221 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenradius
Die Sonne erscheint von der Erde aus unter einem Sehwinkel von α ≈ 0,52°. Die Entfernung der Erde vom Mittelpunkt der Sonne beträgt ca. \(150 \cdot {10^6}{\rm{ km}}\).
Aufgabenstellung - Bearbeitungszeit 05:40
Geben Sie eine Formel zur Berechnung des Sonnenradius an und berechnen Sie den Radius!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1092
AHS - 1_092 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktion
Gegeben ist ein rechtwinkeliges Dreieck:
Aufgabenstellung:
Geben Sie tan ψ in Abhängigkeit von den Seitenlängen u, v und w an!
Aufgabe 1416
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sehwinkel
Der Sehwinkel ist derjenige Winkel, unter dem ein Objekt von einem Beobachter wahrgenommen wird. Die nachstehende Abbildung verdeutlicht den Zusammenhang zwischen dem Sehwinkel α, der Entfernung r und der realen („wahren“) Ausdehnung g eines Objekts in zwei Dimensionen.
Quelle: http://upload.wikimedia.org/wikipedia/commons/d/d3/ScheinbareGroesse.png [22.01.2015] (adaptiert)
Aufgabenstellung:
Geben Sie eine Formel an, mit der die reale Ausdehnung g dieses Objekts mithilfe von \(\alpha\) und r berechnet werden kann!
g =
Aufgabe 1739
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Räumliches Sehen
Betrachtet man einen Gegenstand, so schließen die Blickrichtungen der beiden Augen einen Winkel ε ein. In der nachstehend dargestellten Situation hat der Gegenstand G zu den beiden Augen A1 und A2 den gleichen Abstand g. Der Augenabstand wird mit d bezeichnet.
Aufgabenstellung
Geben Sie den Abstand g in Abhängigkeit vom Augenabstand d und vom Winkel ε an. [0 / 1 Punkt]
g =
Aufgabe 1440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenhöhe
Unter der Sonnenhöhe φ versteht man denjenigen spitzen Winkel, den die einfallenden Sonnenstrahlen mit einer horizontalen Ebene einschließen. Die Schattenlänge s eines Gebäudes der Höhe h hangt von der Sonnenhöhe φ ab (s, h in Metern).
Aufgabenstellung:
Geben Sie eine Formel an, mit der die Schattenlange s eines Gebäudes der Hohe h mithilfe der Sonnenhöhe φ berechnet werden kann!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1220
AHS - 1_220 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Raumdiagonale beim Würfel
Gegeben ist ein Würfel mit der Seitenlänge a
Aufgabenstellung:
Berechnen Sie die Größe des Winkels φ zwischen einer Raumdiagonalen und einer Seitenflächendiagonalen eines Würfels!
Aufgabe 1536
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rhombus (Raute)
In einem Rhombus mit der Seite a halbieren die Diagonalen e= AC und f= BD einander. Die Diagonale e halbiert den Winkel α= ∡ DAB und die Diagonale f halbiert den Winkel β= ∡ ABC
Aufgabenstellung:
Gegeben sind die Seitenlänge a und der Winkel β. Geben Sie eine Formel an, mit der f mithilfe von a und β berechnet werden kann!
Aufgabe 1344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definition der Winkelfunktionen
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck PQR.
- Aussage 1: \(\sin \alpha = \dfrac{p}{r}\)
- Aussage 2: \(\sin \alpha = \dfrac{q}{r}\)
- Aussage 3: \(\tan \beta = \dfrac{p}{q}\)
- Aussage 4: \(\tan \alpha = \dfrac{r}{p}\)
- Aussage 5: \(\cos \beta = \dfrac{p}{r}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Gleichungen an, die für das dargestellte Dreieck gelten!
Aufgabe 1594
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 5. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gefälle einer Regenrinne
Eine Regenrinne hat eine bestimmte Länge l (in Metern). Damit das Wasser gut abrinnt, muss die Regenrinne unter einem Winkel von mindestens α zur Horizontalen geneigt sein. Dadurch ergibt sich ein Höhenunterschied von mindestens h Metern zwischen den beiden Endpunkten der Regenrinne.
Aufgabenstellung:
Geben Sie eine Formel zur Berechnung von h in Abhängigkeit von l und α an!
h=
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1134
AHS - 1_134 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechtwinkeliges Dreieck
Von einem rechtwinkeligen Dreieck ABC sind die Längen der Seiten a und c gegeben.
Aufgabenstellung:
Geben Sie eine Formel für die Berechnung des Winkels α an!
Aufgabe 1219
AHS - 1_219 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dennis Tito
Dennis Tito, der 2001 als erster Weltraumtourist unterwegs war, sah die Erdoberfläche unter einem Sehwinkel von 142°.
Aufgabenstellung:
Berechnen Sie, wie hoch (h) über der Erdoberfläche sich Dennis Tito befand, wenn vereinfacht die Erde als Kugel mit einem Radius r = 6 370 km angenommen wird! Geben Sie das Ergebnis auf ganze Kilometer gerundet an!
Aufgabe 1811
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leiter
Eine Leiter lehnt an einer senkrechten Mauer. Die Leiter liegt in 6 m Hohe an der Mauer an und schließt mit der Mauer einen Winkel von 20° ein. Dieser Sachverhalt wird durch die nebenstehende (nicht maßstabgetreue) Abbildung veranschaulicht.
Aufgabenstellung:
Berechnen Sie die Länge der Leiter.
[0 / 1 Punkt]