AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 4.4
Aufgaben zum Inhaltsbereich FA 4.4: Den Zusammenhang zwischen dem Grad der Polynomfunktion und der Anzahl der Null-, Extrem- und Wendestellen wissen
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 4.4
Polynomfunktion
\(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} \,\,\,{\text{mit}}\,\,\,n \in {\Bbb N}\)
FA 4.4: Den Zusammenhang zwischen dem Grad der Polynomfunktion und der Anzahl der Null-, Extrem- und Wendestellen wissen
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1508
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion vom Grad n
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f. Alle charakteristischen Punkte des Graphen (Schnittpunkte mit den Achsen, Extrempunkte, Wendepunkte) sind in dieser Abbildung enthalten.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die Polynomfunktion f ist vom Grad___1___ , weil f genau ___2___ hat.
1 | |
\(n < 3\) | A |
\(n = 3\) | B |
\(n > 3\) | C |
2 | |
eine Extremstelle | I |
zwei Wendestellen | II |
zwei Nullstellen | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1039
AHS - 1_039 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Nullstellen einer Polynomfunktion
Wie viele verschiedene reelle Nullstellen kann eine Polynomfunktion 3. Grades haben?
Aufgabenstellung
Veranschaulichen Sie Ihre Lösungsfälle durch jeweils einen möglichen Graphen!
Aufgabe 1436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion
Eine reelle Funktion f mit \(f\left( x \right) = a{x^3} + b{x^2} + cx + d{\text{ }}\)mit \(a,\,\,b,\,\,c,\,\,d \in {\Bbb R}{\text{ und }}a \ne 0\) heißt Polynomfunktion dritten Grades.
- Aussage 1: Jede Polynomfunktion dritten Grades hat immer zwei Nullstellen.
- Aussage 2: Jede Polynomfunktion dritten Grades hat genau eine Wendestelle.
- Aussage 3: Jede Polynomfunktion dritten Grades hat mehr Nullstellen als lokale Extremstellen.
- Aussage 4: Jede Polynomfunktion dritten Grades hat mindestens eine lokale Maximumstelle.
- Aussage 5: Jede Polynomfunktion dritten Grades hat höchstens zwei lokale Extremstellen.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1083
AHS - 1_083 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion 3. Grades
Gegeben ist die Polynomfunktion 3. Grades \(f\left( x \right) = a{x^3} + b{x^2} + cx + d{\text{ mit a}}{\text{,}}\,\,{\text{b}}{\text{,}}\,\,{\text{c}}{\text{,}}\,\,{\text{d}} \in \mathbb{R}{\text{ und }}a \ne 0\)
Wie viele reelle Nullstellen kann diese Funktion besitzen?
- Aussage 1: keine
- Aussage 2: mindestens eine
- Aussage 3: höchstens drei
- Aussage 4: genau vier
- Aussage 5: unendlich viele
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1271
AHS - 1_271 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion mit Terrassenpunkt
Ein Terrassen- bzw. Sattelpunkt an einer Stelle x0 liegt dann vor, wenn \(f'\left( {{x_0}} \right) = f''\left( {{x_0}} \right)\) gilt. Eine Polynomfunktion f vierten Grades besitzt den Sattelpunkt S = (0|0). Die nachstehenden fünf Abbildungen zeigen Graphen von Polynomfunktionen, wobei alle Extrem- und Wendepunkte in den Darstellungen enthalten sind.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
- Graph 5:
Aufgabenstellung:
Kreuzen Sie die beiden Abbildungen an, die den Graphen der Funktion f darstellen können!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1460
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Polynomfunktionen 3. Grades
Eine Polynomfunktion 3. Grades hat allgemein die Form
\(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) mit \(a,b,c,d \in {\Bbb R}\) und \(a \ne 0\)
- Aussage 1: Es gibt Polynomfunktionen 3. Grades, die keine lokale Extremstelle haben.
- Aussage 2: Es gibt Polynomfunktionen 3. Grades, die keine Nullstelle haben.
- Aussage 3: Es gibt Polynomfunktionen 3. Grades, die mehr als eine Wendestelle haben.
- Aussage 4: Es gibt Polynomfunktionen 3. Grades, die keine Wendestelle haben.
- Aussage 5: Es gibt Polynomfunktionen 3. Grades, die genau zwei verschiedene reelle Nullstellen haben.
Aufgabenstellung:
Welche der obigen Aussagen treffen für Polynomfunktionen 3. Grades zu? Kreuzen Sie die beiden zutreffenden Antworten an!
Aufgabe 1388
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 10. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Symmetrische Polynomfunktion
Der Graph einer zur senkrechten Achse symmetrischen Polynomfunktion f besitzt den lokalen Tiefpunkt T = (3|–2).
Aufgabenstellung:
Begründen Sie, warum die Polynomfunktion f mindestens 4. Grades sein muss!
Aufgabe 1623
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f.
Aufgabenstellung:
Begründen Sie, warum es sich bei der dargestellten Funktion nicht um eine Polynomfunktion dritten Grades handeln kann!
Aufgabe 1019
AHS - 1_019 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktionen
Die folgenden Aussagen beschreiben Eigenschaften von Polynomfunktionen f mit \(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} {\text{ mit }}n \in \mathbb{N}\)
- Aussage 1: Jede Polynomfunktion dritten Grades hat genau eine Wendestelle.
- Aussage 2: Jede Polynomfunktion vierten Grades hat mindestens eine Nullstelle.
- Aussage 3: Jede Polynomfunktion, die zwei lokale Extremstellen hat, ist mindestens vom Grad 3.
- Aussage 4: Jede Polynomfunktion, die genau zwei lokale Extremstellen hat, hat mindestens eine Wendestelle.
- Aussage 5: Jede Polynomfunktion, deren Grad größer als 3 ist, hat mindestens eine lokale Extremstelle.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1647
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion
Gegeben ist eine Polynomfunktion
\(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
wobei \(\left( {a,b,c,d \in {\Bbb R};\,\,\,\,\,a \ne 0} \right)\)
Aufgabenstellung:
Nachstehend sind Aussagen über die Funktion f gegeben. Welche dieser Aussagen trifft/treffen für beliebige Werte von a ≠ 0, b, c und d auf jeden Fall zu? Kreuzen Sie die zutreffende(n) Aussage(n) an!
- Aussage 1: Die Funktion f hat mindestens einen Schnittpunkt mit der x-Achse.
- Aussage 2: Die Funktion f hat höchstens zwei lokale Extremstellen.
- Aussage 3: Die Funktion f hat höchstens zwei Punkte mit der x-Achse gemeinsam.
- Aussage 4: Die Funktion f hat genau eine Wendestelle.
- Aussage 5: Die Funktion f hat mindestens eine lokale Extremstelle.
Aufgabe 1671
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktionen dritten Grades
Eine Polynomfunktion dritten Grades ändert an höchstens zwei Stellen ihr Monotonieverhalten.
Aufgabenstellung:
Skizzieren Sie im nachstehenden Koordinatensystem den Graphen einer Polynomfunktion dritten Grades f, die an den Stellen x = –3 und x = 1 ihr Monotonieverhalten ändert!
Aufgabe 1815
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion
Zwischen dem Grad einer Polynomfunktion und der Anzahl der reellen Nullstellen, der lokalen Extremstellen und der Wendestellen besteht ein Zusammenhang.
Aufgabenstellung:
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
Jede Polynomfunktion _____1_____ hat _____2_____ .
- Satzteil 1.1: 4. Grades
- Satzteil 1.2: 5. Grades
- Satzteil 1.3: 6. Grades
- Satzteil 2.1: mindestens zwei verschiedene lokale Extremstellen
- Satzteil 2.2: mindestens zwei verschiedene reelle Nullstellen
- Satzteil 2.3: mindestens eine Wendestelle
[0 / 1 Punkt]