AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 6.4
Aufgaben zum Inhaltsbereich FA 6.4: Periodizität als charakteristische Eigenschaft kennen und im Kontext deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 6.4
Sinusfunktion, Cosinusfunktion
FA 6.4: Periodizität als charakteristische Eigenschaft kennen und im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1577
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodizität
Gegeben ist eine reelle Funktion f mit der Funktionsgleichung \(f\left( x \right) = 3 \cdot \sin \left( {b \cdot x} \right){\text{ mit }}b \in {\Bbb R}\)
- Aussage 1: \(\dfrac{b}{2}\)
- Aussage 2: \(b\)
- Aussage 3: \(\dfrac{b}{3}\)
- Aussage 4: \(\dfrac{\pi }{b}\)
- Aussage 5: \(\dfrac{{2\pi }}{b}\)
- Aussage 6: \(\dfrac{\pi }{3}\)
Aufgabenstellung:
Einer der obenstehend angegebenen Werte gibt die (kleinste) Periodenlange der Funktion f an. Kreuzen Sie den zutreffenden Wert an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1284
AHS - 1_284 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodizität
Die nachstehende Abbildung zeigt die Graphen f1, f2 und f3 von Funktionen der Form \(f\left( x \right) = \sin \left( {b \cdot x} \right)\)
\({f_1} = \sin \left( x \right);\) \({f_2} = \sin \left( {2x} \right);\) \({f_3} = \sin \left( {\dfrac{x}{2}} \right)\)
Aufgabenstellung:
Bestimmen Sie jeweils die der Funktion entsprechende primitive (kleinste) Periode p!
Aufgabe 1506
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodische Funktion
Gegeben ist die periodische Funktion f mit der Funktionsgleichung \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Geben Sie die kleinste Zahl a > 0 (Maßzahl für den Winkel in Radiant) so an, dass für alle \(x \in {\Bbb R}\) die Gleichung \(f\left( {x + a} \right) = f\left( x \right)\) gilt!
Aufgabe 1721
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Periodenlänge
Gegeben ist die Funktion
\(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = \dfrac{1}{3} \cdot \sin \left( {\dfrac{{3 \cdot \pi }}{4} \cdot x} \right)\)
Aufgabenstellung:
Bestimmen Sie die Länge der (kleinsten) Periode p der Funktion f .
p = ___
[0 / 1 Punkt]
Aufgabe 1793
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wechselstrom
Bei sinusförmigem Wechselstrom ändert sich der Wert der Stromstärke periodisch. In der nachstehenden Abbildung ist die Stromstärke I(t) in Abhängigkeit von der Zeit t für einen sinusförmigen Wechselstrom dargestellt (t in s, I(t) in A).
Aufgabenstellung:
Geben Sie den Maximalwert der Stromstärke und die (kleinste) Periodenlänge dieses sinusförmigen Wechselstroms an.
- Maximalwert: ___ A
- (kleinste) Periodenlänge: ___s
[0 / ½ / 1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.