AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.4
Aufgaben zum Inhaltsbereich AG 3.4: Geraden durch (Parameter-)Gleichungen in ℝ2 und ℝ3 angeben können; Geradengleichungen interpretieren können; Lagebeziehungen (zwischen Geraden und zwischen Punkt und Gerade) analysieren, Schnittpunkte ermitteln können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.4
Vektoren
AG 3.4: Geraden durch (Parameter-)Gleichungen in ℝ2 und ℝ3 angeben können; Geradengleichungen interpretieren können; Lagebeziehungen (zwischen Geraden und zwischen Punkt und Gerade) analysieren, Schnittpunkte ermitteln können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 1132
AHS - 1_132 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gerade in Parameterform
Gegeben ist die Gerade g mit der Gleichung \(3x - 4y = 12\)
Aufgabenstellung:
Geben Sie eine Gleichung von g in Parameterform an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1514
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geradengleichung
Die Gerade g ist durch eine Parameterdarstellung \(g:X = \left( {\begin{array}{*{20}{c}} 2\\ 6 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 3\\ { - 5} \end{array}} \right)\) gegeben.
Aufgabenstellung:
Geben Sie mögliche Werte der Parameter a und b so an, dass die durch die Gleichung \(a \cdot x + b \cdot y = 1\) gegebene Gerade h normal zur Geraden g ist!
Aufgabe 1561
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallelität von Geraden
Gegeben sind folgende Parameterdarstellungen der Geraden g und h:
\(\begin{array}{l} g:X = \left( {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} { - 3}\\ 1\\ 2 \end{array}} \right)\,\,\,\,\,mit\,\,\,t \in \Bbb R\\ h:X = \left( {\begin{array}{*{20}{c}} 3\\ 1\\ 1 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 6\\ {{h_y}}\\ {{h_z}} \end{array}} \right)\,\,\,\,\,mit\,\,\,s \in \Bbb R\end{array}\)
Aufgabenstellung
Bestimmen Sie die Koordinaten hy und hz des Richtungsvektors der Geraden h so, dass die Gerade h zur Geraden g parallel ist!
Aufgabe 1058
AHS - 1_058 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Streckenmittelpunkt
Man kann mithilfe der Geradengleichung \(X = A + t \cdot \overrightarrow {AB} {\text{ mit }}t \in \mathbb{R}\) den Mittelpunkt M der Strecke AB bestimmen.
Aufgabenstellung:
Geben Sie an, welchen Wert der Parameter t bei dieser Rechnung annehmen muss!
Aufgabe 1215
AHS - 1_215 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagebeziehung von Geraden
In der nachstehenden Zeichnung sind vier Geraden durch die Angabe der Strecken \(\overline {AB} ,\,\,\overline {CD} ,\,\,\overline {EF}\) und \(\overline {GH}\) festgelegt.
- Aussage 1: \({g_{AB}}{\text{ und }}{{\text{g}}_{CD}}\) sind parallel
- Aussage 2: \({g_{AB}}{\text{ und }}{{\text{g}}_{EF}}\) sind identisch
- Aussage 3: \({g_{CD}}{\text{ und }}{{\text{g}}_{EF}}\) sind schneidend
- Aussage 4: \({g_{CD}}{\text{ und }}{{\text{g}}_{GH}}\) sind parallel
- Aussage 5: \({g_{EF}}{\text{ und }}{{\text{g}}_{GH}}\) sind schneidend
Aufgabenstellung
Entnehmen Sie der Zeichnung die Lagebeziehung der Geraden und kreuzen Sie die beiden richtigen Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1137
AHS - 1_137 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gerade im dreidimensionalem Raum
Gegeben ist die Gerade g mit der Gleichung \(X = \left( {\begin{array}{*{20}{c}} 4 \\ 2 \\ 4 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \\ 2 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 1: \(X = \left( {\begin{array}{*{20}{c}} 4 \\ 2 \\ 4 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 3 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 2: \(X = \left( {\begin{array}{*{20}{c}} 5 \\ 7 \\ 9 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 4 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 3: \(X = \left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 8 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \\ 2 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 4: \(X = \left( {\begin{array}{*{20}{c}} 4 \\ 2 \\ 4 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ { - 2} \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 5: \(X = \left( {\begin{array}{*{20}{c}} 3 \\ 3 \\ 2 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
Aufgabenstellung:
Zwei der obigen Gleichungen sind ebenfalls Parameterdarstellungen der Geraden g. Kreuzen Sie diese beiden Gleichungen an!
Aufgabe 1738
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Gerade durch einen Punkt
Im nachstehenden Koordinatensystem ist eine Gerade g abgebildet. Die gekennzeichneten Punkte der Geraden g haben ganzzahlige Koordinaten.
Aufgabenstellung
Geben Sie eine Parameterdarstellung einer zu g parallelen Geraden h durch den Punkt (3 | –1) an. [0 / 1 Punkt]
h: X =
Aufgabe 1537
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Gerade
Gegeben ist die Gerade \(g:X = \left( \begin{array}{l} 1\\ - 2 \end{array} \right) + s \cdot \left( \begin{array}{l} 2\\ 3 \end{array} \right)\). Die Gerade h verläuft parallel zu g durch den Koordinatenursprung.
Aufgabenstellung:
Geben Sie die Gleichung der Geraden h in der Form \(a \cdot x + b \cdot y = c\) mit \(a,b,c \in {\Bbb R}\) an!
Aufgabe 1156
AHS - 1_156 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagebeziehung zweier Geraden
Gegeben sind die Geraden \(g:X = \left( {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} { - 1}\\ 2 \end{array}} \right)\) und \(h:x - 2 \cdot y = - 1\)
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die Geraden g und h _____1______ , weil __________2_________ .
1 | |
sind parallel | A |
sind ident | B |
stehen normal aufeinander | C |
2 | |
der Richtungsvektor von g zum Normalvektor von h parallel ist | I |
die Richtungsvektoren der beiden Geraden g und h parallel sind | II |
der Punkt P = (1|1) auf beiden Geraden g und h liegt | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1216
AHS - 1_216 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Geraden
Gegeben sind die Geraden \(g:X = \left( {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} { - 2}\\ 1 \end{array}} \right)\) und \(h:X = \left( {\begin{array}{*{20}{c}} { - 3}\\ { - 1} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} a\\ { - 2} \end{array}} \right)\)
Aufgabenstellung
Ermitteln Sie den Wert für a so, dass die beiden Geraden parallel zueinander sind!
Aufgabe 1345
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Geraden
Gegeben sind Gleichungen der Geraden g und h. Die beiden Geraden sind nicht ident.
\(\begin{array}{l} g:y = - \dfrac{x}{4} + 8\\ h:X = \left( {\begin{array}{*{20}{c}} 4\\ 3 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 4\\ { - 1} \end{array}} \right) {\text{mit s}} \in {\Bbb R} \end{array} \)
Aufgabenstellung:
Begründen Sie, warum diese beiden Geraden parallel zueinander liegen!
Aufgabe 1214
AHS - 1_214 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Anstieg einer parallelen Geraden
Gegeben sind die zwei Geraden g und h:
\(g:\,\,\,\,\,X = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1\\ 4 \end{array}} \right)\)
\(h:\,\,\,\,\,y = k \cdot x + 7\)
Aufgabenstellung:
Bestimmen Sie den Wert von k so, dass g und h zueinander parallel sind!