Fehlermeldung
BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_W_3.3
Bei Rentenrechnung unter Verwendung geometrischer Reihen modellieren; Barwert, Endwert, Ratenhöhe, Laufzeit und Zinssatz berechnen und die Ergebnisse interpretieren; im Kontext argumentieren
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4050
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seegrundstück - Aufgabe B_415
Teil a
Für den Kauf eines Seegrundstucks benötigt der Käufer einen Kredit in Höhe von € 865.000. (Spesen und Gebühren werden nicht berücksichtigt.) Ein Kreditinstitut macht folgendes Angebot: Der Kreditnehmer bezahlt am Ende jedes Jahres eine Rate in Höhe von € 100.000 bei einem Zinssatz von 6,75 % p. a.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele volle Raten der Kreditnehmer bezahlen muss.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe des ein Jahr nach der letzten vollen Rate fälligen Restbetrags.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4052
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seegrundstück - Aufgabe B_414
Teil c
Ein weiteres Angebot zur Rückzahlung des Kredits innerhalb von 10 Jahren kann mithilfe folgender Zeitachse dargestellt werden:
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie den Rückzahlungsvorgang des in der Zeitachse dargestellten Angebots in Worten.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Ratenhöhe R bei einem Zinssatz von 6 % p. a.
[2 Punkte]
Aufgabe 4111
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil c
Herr Müller nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 100.000 auf. Der vereinbarte Zinssatz betragt 3 % p. a. Der Kredit soll durch die auf der nachstehenden Zeitachse dargestellten Zahlungen vollständig getilgt werden.
Die Zahlungen R können als nachschüssige Rente aufgefasst werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie auf der Zeitachse den Bezugszeitpunkt für den Barwert dieser nachschüssigen Rente.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe der Zahlungen R.
[1 Punkt]
Aufgabe 4116
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Hotelerweiterung - Aufgabe B_106
Ein Hotel plant die Errichtung zusätzlicher Zimmer.
Teil d
Um die Investition durchführen zu können, ist ein Bankkredit in Hohe von € 800.000 notwendig. Für die Rückzahlung werden eine Laufzeit von 15 Jahren und nachschüssige Semesterraten in Höhe von jeweils € 38.100 vereinbart.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den effektiven Jahreszinssatz für dieses Finanzierungsmodell.
[1 Punkt]
Aufgabe 4355
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Teil c
Für einen Kredit in Höhe von € 20.000 holt Frau Tomić ein Angebot von einer Bank ein. Die Bank schlagt für die Rückzahlung nachschüssige Jahresraten in Höhe von jeweils € 3.000 bei einem Jahreszinssatz i vor.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie eine Formel zur Berechnung der Restschuld S nach t Jahren.
S =
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4423
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagerhalle - Aufgabe B_484
Für den Kauf einer Lagerhalle benötigt ein Unternehmen € 180.000. Es werden verschiedene Möglichkeiten für die Finanzierung überprüft.
Teil b
Das Unternehmen kann den Kauf der Lagerhalle mit einem Kredit in Höhe von € 180.000 finanzieren. Der Kredit soll durch 40 nachschüssige Quartalsraten bei einem Zinssatz von 1 % p. q. getilgt werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe einer Quartalsrate.
[1 Punkt]
Aufgabe 4425
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parkgarage - Aufgabe B_485
Eine Baugesellschaft errichtet eine Parkgarage. Es wird eine Nutzungsdauer von 40 Jahren angenommen. Die Baugesellschaft rechnet mit einem kalkulatorischen Zinssatz von 4 % p. a.
Teil a
Die Baugesellschaft rechnet mit jährlich nachschüssigen Betriebskosten in Hohe von jeweils € 64.000.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Barwert der Betriebskosten für die gesamte Nutzungsdauer.
[1 Punkt]
Aufgabe 4457
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Öffentlicher Verkehr in Wien - Aufgabe B_515
Teil a
In Wien kostet die Jahreskarte für öffentliche Verkehrsmittel bei einmaliger Zahlung € 365. Alternativ dazu kann die Jahreskarte auch durch 12 monatliche Zahlungen zu je € 33 bezahlt werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie denjenigen effektiven Jahreszinssatz, bei dem 12 vorschüssige Monatsraten in Höhe von € 33 einem Barwert von € 365 entsprechen.
[0 / 1 P.]
Aufgabe 4599
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Esszimmereinrichtung – Aufgabe B_558
Petra möchte eine neue Esszimmereinrichtung kaufen, die € 4.000 kostet.
Teil b
Petra kann die Esszimmereinrichtung auch bei einem Versandhaus über Ratenzahlung finanzieren. Aufgrund der anfallenden Zinsen betragen die Kosten dabei monatlich € 1,65 pro € 100 offener Restschuld. Petra berechnet für diese Ratenzahlung einen Jahreszinssatz von rund 21,7 %.
1. Teilaufgabe - Bearbeitungszeit 05:40
Überprüfen Sie nachweislich, ob Petras Berechnung stimmt.
[0 / 1 P.]
Beim Kauf der Esszimmereinrichtung um € 4.000 über Ratenzahlung müssen 12 nachschüssige Monatsraten in Höhe von jeweils € 370 und ein Restbetrag, der zeitgleich mit der letzten Monatsrate fällig ist, bezahlt werden. Der Jahreszinssatz beträgt 21,7 %.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Höhe des Restbetrags.
[0 / 1 P.]
Beim Kauf eines Möbelstücks mit dem Verkaufspreis W über Ratenzahlung müssen 3 nachschüssige Monatsraten der Höhe R bezahlt werden. Der zugehörige monatliche Aufzinsungsfaktor wird mit q12 bezeichnet.
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die zutreffende Gleichung an.
[1 aus 5] [0 / 1 P.]
- Gleichung 1: \(W = R + \dfrac{R}{{{q_{12}}}} + \dfrac{R}{{{q_{12}}^2}}\)
- Gleichung 2: \(W \cdot {q_{12}}^3 = R + \dfrac{R}{{{q_{12}}}} + \dfrac{R}{{{q_{12}}^2}}\)
- Gleichung 3: \(W = \dfrac{R}{{{q_{12}}}} + \dfrac{R}{{{q_{12}}^2}} + \dfrac{R}{{{q_{12}}^3}}\)
- Gleichung 4: \(W \cdot {q_{12}}^3 = \dfrac{R}{{{q_{12}}}} + \dfrac{R}{{{q_{12}}^2}} + \dfrac{R}{{{q_{12}}^3}}\)
- Gleichung 5: \(W \cdot {q_{12}}^3 = R \cdot {q_{12}}^3 + R \cdot {q_{12}}^2 + R \cdot {q_{12}}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5626
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abfindung – Aufgabe B_538
Vier Geschwister haben gemeinsam ein Haus geerbt. Martha übernimmt das Haus und muss dafür ihren Geschwistern Andreas, Beate und Christian zum Zeitpunkt der Übernahme Geldbeträge in Höhe von jeweils € 80.000 auszahlen. Ein solcher Geldbetrag wird Abfindung genannt.
Teil b
Die Auszahlung der Abfindung in Höhe von € 80.000 an Beate soll durch Zahlungen erfolgen, die durch die nachstehende Gleichung beschrieben werden.
\(80000 = 20000 + R \cdot \dfrac{{{{1,02}^4} - 1}}{{1,02 - 1}} \cdot \dfrac{1}{{{{1,02}^6}}}\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie den Betrag € 20.000 und die Raten R auf der nachstehenden Zeitachse dar.
[0 / 1 P.]
Abbildung fehlt
Aufgabe 5627
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abfindung – Aufgabe B_538
Vier Geschwister haben gemeinsam ein Haus geerbt. Martha übernimmt das Haus und muss dafür ihren Geschwistern Andreas, Beate und Christian zum Zeitpunkt der Übernahme Geldbeträge in Höhe von jeweils € 80.000 auszahlen. Ein solcher Geldbetrag wird Abfindung genannt.
Teil c
Die Auszahlung der Abfindung in Höhe von € 80.000 an Christian soll durch Quartalsraten in Höhe von jeweils € 4.000 und eine Restzahlung erfolgen. Die erste Zahlung erfolgt nach 1 Jahr. Der Zinssatz beträgt 2 % p. a.
1. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung im gegebenen Sachzusammenhang.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Anzahl der vollen Quartalsraten.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Höhe der Restzahlung, die 1 Quartal nach der letzten vollen Quartalsrate ausgezahlt wird.
[0 / 1 P.]
Aufgabe 5657
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Autokauf – Aufgabe B_546
Clara mochte ein neues Auto kaufen.
Teil a
Eine Bank bietet Clara einen Kredit in Höhe von € 15.000 mit einer Laufzeit von 7 Jahren an. Die Rückzahlung erfolgt durch nachschüssige Monatsraten in Hohe von je € 216.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Monatszinssatz i12 für diesen Kredit.
[0 / 1 P.]
Mit dem monatlichen Aufzinsungsfaktor \({q_{12}} = 1 + {i_{12}}\) führt Clara die nachstehende Berechnung durch.
\(X = 15000 \cdot {q_{12}}^{24} - 216 \cdot \dfrac{{{q_{12}}^{24} - 1}}{{{q_{12}} - 1}}\)
2. Teilaufgabe - Bearbeitungszeit 05:40
Beschreiben Sie die Bedeutung von X im gegebenen Sachzusammenhang.
[0 / 1 P.]