Werbung für Region 4
Diskrete Zufallsvariable
Formel
Diskrete Zufallsvariable
Die Anzahl der Ergebnisse des Zufallsexperiments ist endlich / abzählbar. Eine diskrete Zufallsvariable ist durch die Angabe ihres Wertebereichs \({x_1},{x_2},...,{x_n}\) und den Einzelwahrscheinlichkeiten fur das Auftreten von jedem Wert des Wertebereichs, also \(P\left( {X = {x_1}} \right) = {p_1},\,\,\,P\left( {X = {x_2}} \right) = {p_2},...P\left( {X = {x_n}} \right) = {p_n}\) vollständig definiert. Man spricht von der Wahrscheinlichkeitsfunktion, welche es nur für diskrete Zufallsvariablen gibt. (Bei stetigen Zufallsvariablen gibt es entsprechend die Dichtefunktion.)
Spezielle Verteilungen diskreter Zufallsvariabler sind
- Bernoulli-Verteilung
- Binomialverteilung (mit Zurücklegen)
- Poissonverteilung
- hypergeometrische Verteilung (ohne Zurücklegen)
Wahrscheinlichkeitsfunktion
Die Wahrscheinlichkeitsfunktion, welche es nur für diskrete Zufallsvariablen gibt, beschreibt eine diskrete Wahrscheinlichkeitsverteilung, indem sie jedem \(x \in {\Bbb R}\) einer Zufallsvariablen X genau eine Wahrscheinlichkeit P aus dem Intervall \(\left[ {0;1} \right]\) zuordnet.
\(f:x \to p\)
\(f:x \to \left\{ {\begin{array}{*{20}{l}} {P\left( {X = {x_i}} \right)}&{für\,\,x = {x_i}}\\ 0&{für\,\,\,x \ne {x_i}} \end{array}} \right.\)
Funktionsgraph der Wahrscheinlichkeitsfunktion
Im Funktionsgraph der Wahrscheinlichkeitsverteilung werden über jedem (diskreten) Wert x die jeweilige Wahrscheinlichkeit P(X=x) dargestellt, wobei die einzelnen Wahrscheinlichkeiten P(X=x) mit Hilfe der Laplace-Wahrscheinlichkeit berechnet werden. Im Stabdiagramm wird über jedem (diskreten) Wert x ein Stab (dünner Balken) aufgetragen, dessen Höhe der jeweilige Wahrscheinlichkeit P(X=x) entspricht.
Verteilungsfunktion
Die Verteilungsfunktion einer diskreten Zufallsvariablen, auch kumulative Verteilfunktion genannt, gibt die Wahrscheinlichkeit dafür an, dass die Zufallsvariable X höchstens den Wert x annimmt.
\(F\left( x \right) = P\left( {X \leqslant x} \right)\)
Sie ist eine monoton steigende Treppenfunktion mit Sprüngen an den Stellen xi und daher nicht stetig. Geometrisch entspricht die Wahrscheinlichkeit P(X=x) der Sprunghöhe der Verteilungsfunktion F(x) an der Stelle x.
F(x) ist für jedes x definiert und nimmt Werte von mindestens 0 bis höchstens 1 an.
\(\eqalign{ & \mathop {\lim }\limits_{x \to - \infty } F(x) = 0 \cr & \mathop {\lim }\limits_{x \to \infty } F(x) = 1 \cr} \)
Darüber hinaus gilt:
\(\eqalign{ & P\left( {X \geqslant x} \right) = 1 - P\left( {X < x} \right) \cr & P\left( {X > x} \right) = 1 - P\left( {X \leqslant x} \right) \cr} \)
Erwartungswert
Der Erwartungswert einer diskreten Zufallsvariablen X, welche die diskreten Werte x1, x2, ..., xn mit den zugehörigen Wahrscheinlichkeiten P(X=x1), P(X=x2), ... P(X=xn) annimmt, errechnet sich aus der Summe der Produkte vom jeweiligen Wert xi und seiner Wahrscheinlichkeit P(X=xi). Merkregel: "Was passiert" mal "mit welcher Wahrscheinlichkeit passiert es".
\(E\left( X \right) = \mu = {x_1} \cdot P\left( {X = {x_1}} \right) + {x_2} \cdot P\left( {X = {x_2}} \right) + ... + {x_n} \cdot P\left( {X = {x_n}} \right) = \sum\limits_{i = 1}^n {{x_i} \cdot P\left( {X = {x_i}} \right)} \)
Der Erwartungswert ist ein Maß für die mittlere Lage der Verteilung, und somit ein Lageparameter der beschreibenden Statistik.
- Ist die Wahrscheinlichkeit für jeden Versuch die selbe (z.B. bei binomialverteilten Experimenten), dann ist der Erwartungswert gleich dem arithmetischen Mittel.
- Ist die Wahrscheinlichkeit für jeden Versuch unterschiedlich , dann ist der Erwartungswert gemäß obiger Formel ein gewichtetes arithmetisches Mittel.
Physikalische Analogie
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x plaziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft.
Varianz
Die Varianz einer diskreten Zufallsvariablen ist die mittlere quadratische Abweichung der Zufallsvariablen von ihrem Erwartungswert und somit ein Streumaß der beschreibenden Statistik.
\({\sigma _x}^2 = Var\left( X \right) = {\sum\limits_{i = 1}^n {\left( {{x_i} - E\left( x \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right)\)
Verschiebungssatz
Der Verschiebungssatz für diskrete Zufallsvariablen kann den Rechenaufwand für die Berechnung der Varianz verringern, es kann aber zum Verlust von Rechengenauigkeit kommen.
\({\sigma _x}^2 = Var\left( X \right) = E\left( {{X^2}} \right) - E{\left( X \right)^2} = \sum\limits_{i = 1}^n {{x_1}^2 \cdot P\left( {X = {x_i}} \right) - E{{\left( X \right)}^2}} \)
Standardabweichung
Die Varianz hat den Nachteil, als Einheit das Quadrat der Einheit der zugrunde liegenden Zufallsvariablen zu haben. Das ist bei der Standardabweichung (auf Grund der Quadratwurzel) und beim Erwartungswert nicht der Fall.
\({\sigma _x} = \sqrt {Var\left( X \right)} \)
Physikalische Analogie für den Erwartungswert und für die Varianz:
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x plaziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft
Illustration zur Veranschaulichung einer kleinen Varianz:
\(\eqalign{ & {x_1} = 3;\,\,\,\,\,{x_2} = 4;\,\,\,\,\,{x_3} = 5; \cr & P\left( {{x_1}} \right) = 0,2;\,\,\,\,\,P\left( {{x_2}} \right) = 0,6;\,\,\,\,\,P\left( {{x_3}} \right) = 0,2; \cr & E(X) = \mu = \sum\limits_{i = 1}^3 {{x_i} \cdot P\left( {X = {x_i}} \right)} = 3 \cdot 0,2 + 4 \cdot 0,6 + 5 \cdot 0,2 = 4 \cr & Var(X) = {\sum\limits_{i = 1}^3 {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\left( {3 - 4} \right)^2} \cdot 0,2 + {\left( {4 - 4} \right)^2} \cdot 0,6 + {\left( {5 - 4} \right)^2} \cdot 0,2 = 0,4 \cr} \)
Alternativ errechnet sich die Varianz unter Zuhilfenahme vom Verschiebungssatz wie folgt:
\(Var(X) = \sum\limits_{i = 3}^3 {{x_i}^2 \cdot P\left( {X = {x_i}} \right)} - {\left( {E\left( X \right)} \right)^2} = {3^2} \cdot 0,2 + {4^2} \cdot 0,6 + {5^2} \cdot 0,2 - {4^2} = 0,4\)
Illustration zur Veranschaulichung einer großen Varianz mit dem gleichen Erwartungswert:
\(\eqalign{ & {x_1} = 2;\,\,\,\,\,{x_2} = 4;\,\,\,\,\,{x_3} = 6; \cr & P\left( {{x_1}} \right) = 0,2;\,\,\,\,\,P\left( {{x_2}} \right) = 0,6;\,\,\,\,\,P\left( {{x_3}} \right) = 0,2; \cr & E(X) = \mu = \sum\limits_{i = 1}^3 {{x_i} \cdot P\left( {X = {x_i}} \right)} = 2 \cdot 0,2 + 4 \cdot 0,6 + 6 \cdot 0,2 = 4 \cr & Var(X) = {\sum\limits_{i = 1}^3 {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\left( {2 - 4} \right)^2} \cdot 0,2 + {\left( {4 - 4} \right)^2} \cdot 0,6 + {\left( {6 - 4} \right)^2} \cdot 0,2 = 1,6 \cr} \)
Alternativ errechnet sich die Varianz unter Zuhilfenahme vom Verschiebungssatz wie folgt:
\(Var(X) = \sum\limits_{i = 3}^3 {{x_i}^2 \cdot P\left( {X = {x_i}} \right)} - {\left( {E\left( X \right)} \right)^2} = {2^2} \cdot 0,2 + {4^2} \cdot 0,6 + {6^2} \cdot 0,2 - {4^2} = 1,6\)
Werbung für Region 1
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Schließende Statistik | Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen. Die Stichprobe ist eine repräsentative Teilmenge, die der Grundgesamtheit zufällig entnommen wurde. Die Wahrscheinlichkeitsrechnung wertet die Ergebnisse von Zufallsexperimenten aus. |
Aktuelle Lerneinheit
Diskrete Zufallsvariable | Für diskrete Zufallsvariablen ist die Anzahl der Ergebnisse eines Zufallsexperiments endlich, also abzählbar. Sie wird durch eine Wahrscheinlichkeitsfunktion beschrieben. |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Standardnormalverteilung | Unter der Standardnormalverteilung versteht man die mit μ=0 und σ=1 standardisierte Normalverteilung. Mit Hilfe der z-Transformation rechnet man beliebige Erwartungswerte bzw. Standardabweichungen auf die Standardnormalverteilung um. |
Konfidenzintervall | Bei der Ermittlung statistischer Parameter prüft man selten alle möglichen Ergebnisse, sondern man beschränkt sich auf eine Stichprobe. Dadurch ist die Messung aber Ungenauigkeiten unterworfen. Konfidenzintervalle definieren einen Bereich, in dem man mit einer bestimmten Wahrscheinlichkeit darauf vertrauen darf, dass sich der wahre Wert darin befindet. |
Gleichverteilung - Disparität - Konzentration | Von Gleichverteilung spricht man, wenn jeder Merkmalsträger den gleichen Anteil an der Merkmalssumme auf sich vereint. |
Gedächtnislosigkeit der Exponentialverteilung und der geometrischen Verteilung | Sie gibt die Wahrscheinlichkeit an, dass ein Ereignis (zB ein Produktfehler) nach weiteren t Minuten eintritt, nachdem man schon s Minuten gewartet hat. Man spricht auch von der "Nichtalterungseigenschaft". |
Exponentialverteilung | Die Exponetialfunktion wird zur Modellierung von der Zeit zwischen 2 Ereignissen oder der Lebensdauer von Bauteilen verwendet. |
Rechtecksverteilung | Die Rechtecksverteilung im Intervall [a, b] ist eine stetige Gleichverteilung, bei der jedes Ergebnis gleich wahrscheinlich ist. |
Normalverteilung | Die Normalverteilung, auch gaußsche-Glockenverteilung genannt, ist zusammen mit ihrem Spezialfall der Standardnormalverteilung die wichtigste Verteilungsfunktion. |
Hypergeometrische Verteilung | Die hypergeometrische Verteilung ist eine diskrete Verteilung. Die Grundgesamtheit vermindert sich aber bei jeder Wiederholungen, denn es handelt sich um ein „Ziehen ohne Zurücklegen“. |
Poissonverteilung | Die Poissonverteilung ist eine diskrete Verteilung. Sie ist ein Grenzfall der Binomialverteilung wenn n sehr groß (größer 100) ist, verbunden mit einer sehr kleinen Erfolgswahrscheinlichkeit die gegen Null konvergiert |
Binomialverteilung | Die Binomialverteilung ist eine diskrete Verteilung. Sie entsteht, wann man ein Bernoulli Experiment (welches nur 2 mögliche Ausgänge hat) n Mal gleich und unverändert ausführt. |
Bernoulli-Verteilung | Die Bernoulli-Verteilung ist die einfachste diskrete Verteilung. Sie entsteht, wenn man ein Bernoulli Experiment (welches nur 2 mögliche Ausgänge hat) genau 1 Mal ausführt. Die Bernoulli Verteilung ist daher ein Spezialfall der Binomialverteilung für n=1. |
Histogramm der Häufigkeitsverteilung | Histogramme schauen ähnlich aus wie Balkendiagramme - man benötigt zu deren grafischer Darstellung die jeweilige Balkenbreite (Klassenbreite) und die Balkenhöhe (=relativer / prozentueller Anteil der Messwerte) |
Stetige Zufallsvariable | Man spricht von einer stetigen Zufallsvariablen, wenn die Anzahl der Ergebnisse des Zufallsexperiments unendlich, also nicht abzählbar, ist. |
Zufallsvariable | Eine Zufallsvariable X ordnet jedem Ergebnis ω vom Ergebnisraum Ω eines Zufallsexperiments eine reelle Zahl x zu. |
Mehrstufige Zufallsexperimente und deren Wahrscheinlichkeiten |
|
Einstufige Zufallsexperimente und deren Wahrscheinlichkeiten | Ein Zufallsexperiment ist ein grundsätzlich beliebig oft wiederholbarer "Versuch", welcher unter identischen Bedingungen zu 2 oder mehreren nicht vorhersagbaren Ergebnissen führt. Wir unterscheiden zwischen Bernoulli und Laplace Experiment. |
Aufgaben zu diesem Thema
Aufgabe 1611
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 22. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahrscheinlichkeit
Die Zufallsvariable X hat den Wertebereich \(\left\{ {0,1,...,9,10} \right\}\). Gegeben sind die beiden Wahrscheinlichkeiten \(P\left( {X = 0} \right) = 0,35\) und \(P\left( {X = 1} \right) = 0,38\)
Aufgabenstellung:
Berechnen Sie die Wahrscheinlichkeit \(P\left( {X \geqslant 2} \right)\) !
Aufgabe 1587
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 22. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahrscheinlichkeit bestimmen
Die nachstehende Abbildung zeigt die Wahrscheinlichkeitsverteilung einer Zufallsvariablen X.
Aufgabenstellung:
Geben Sie mithilfe dieser Abbildung näherungsweise die Wahrscheinlichkeit \(P\left( {4 \leqslant X < 7} \right)\)an!
\(P\left( {4 \leqslant X < 7} \right) \approx \)
Aufgabe 4409
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weihnachtsmarkt - Aufgabe B_479
Teil d
Jemand beobachtete auf dem Weihnachtsmarkt das Kaufverhalten und bestimmte die folgenden Wahrscheinlichkeiten:
Anzahl n der Marmeladengläser | Wahrscheinlichkeit für den Kauf von n Marmeladengläser pro Person |
0 | 0,24 |
1 | 0,38 |
2 | 0,16 |
3 | 0,12 |
4 | |
\($ \geqslant 5\) | 0 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie die obige Tabelle durch Eintragen des fehlenden Wertes.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Erwartungswert für die Anzahl der gekauften Marmeladegläser pro Person.
[1 Punkt]
Aufgabe 1188
AHS - 1_188 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kennzahlen der Binomialverteilung
Auf einer Sortieranlage werden Flaschen von einem Scanner untersucht und es wird die Art des Kunststoffes ermittelt. 95 % der Flaschen werden richtig erkannt und in die bereitgestellten Behälter einsortiert. Die Werte der Zufallsvariablen X beschreiben die Anzahl der falschen Entscheidungen bei einem Stichprobenumfang von 500 Stück. Verwenden Sie die Binomialverteilung als Modell.
Aufgabenstellung:
Berechnen Sie den Erwartungswert und die Standardabweichung für die Zufallsvariable X!
Werbung für Region 1
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1026
AHS - 1_026 & Lehrstoff: WS 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilung
- Aussage 1: In der Kantine eines Betriebs essen 80 Personen. Am Montag werden ein vegetarisches Gericht und drei weitere Menüs angeboten. Erfahrungsgemäß wählt jede vierte Person das vegetarische Gericht. Es werden 20 vegetarische Gerichte vorbereitet. Wie groß ist die Wahrscheinlichkeit, dass diese nicht ausreichen?
- Aussage 2: Bei einer Lieferung von 20 Mobiltelefonen sind fünf defekt. Es werden drei Geräte gleichzeitig entnommen und getestet. Mit welcher Wahrscheinlichkeit sind mindestens zwei davon defekt?
- Aussage 3: In einer Klasse müssen die Schüler/innen bei der Überprüfung der Bildungsstandards auf einem anonymen Fragebogen ihr Geschlecht (m, w) ankreuzen. Die Wahrscheinlichkeit, das Ankreuzen des Geschlechts nicht durchzuführen, ist für Buben und Mädchen gleich. In der Klasse sind 16 Schülerinnen und 12 Schüler. Fünf Personen haben auf dem Fragebogen das Geschlecht nicht angekreuzt. Mit welcher Wahrscheinlichkeit befinden sich drei Schüler unter den fünf Personen?
- Aussage 4: Ein Großhändler erhält eine Lieferung von 2 000 Mobiltelefonen, von denen erfahrungsgemäß 5 % defekt sind. Mit welcher Wahrscheinlichkeit befinden sich 80 bis 90 defekte Geräte in der Lieferung?
- Aussage 5: In einer Klinik werden 500 kranke Personen mit einem bestimmten Medikament behandelt. Die Wahrscheinlichkeit, dass schwere Nebenwirkungen auftreten, beträgt 0,001. Wie groß ist die Wahrscheinlichkeit, dass bei mehr als zwei Personen schwere Nebenwirkungen auftreten?
Aufgabenstellung:
Kreuzen Sie diejenige(n) Situation(en) an, die mithilfe der Binomialverteilung modelliert werden kann/können!
Aufgabe 1294
AHS - 1_294 & Lehrstoff: WS 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schülerarbeit
Die Spinde einer Schule werden mit Vorhängeschlössern gesichert, die im Eigentum der Schüler/innen stehen. Erfahrungsgemäß müssen 5 % aller Spindschlösser innerhalb eines Jahres aufgebrochen werden, weil die Schlüssel verloren wurden. Ein Schüler berechnet die Wahrscheinlichkeit, dass innerhalb eines Jahres von 200 Schlössern mindestens zwölf aufgebrochen werden müssen. Die nachstehenden Aufzeichnungen zeigen seine Vorgehensweise:
\(P\left( {x \geqslant 12} \right)\) … Berechnung bzw. Berechnung der Gegenwahrscheinlichkeit zu umständlich!
\(\eqalign{ & \mu = 200 \cdot 0,05 = 10 \cr & \sigma = \sqrt {200 - 0,05 \cdot 0,95} \approx 3,08\,\,\, > \,\,\,3 \cr & z = \frac{{x - \mu }}{\sigma } = \frac{{11,5 - 10}}{\sigma } \approx 0,49 \cr & \phi \left( {0,49} \right) = 0,6879 \cr & \Rightarrow P\left( {x \geqslant 12} \right) \cong 1 - 0,6879 \cong 0,3121 \cr & \Rightarrow Zu \approx 31\% \cr} \)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Bei der Anzahl der Schlösser, die aufgebrochen werden müssen, handelt es sich um eine _____1_____ , und _____2_____ .
1 | |
gleichverteilte Zufallsvariable | A |
binomialverteilte Zufallsvariable | B |
normalverteilte Zufallsvariable | C |
2 | |
der Schüler rechnet mit der Normalverteilung, obwohl es nicht zulässig ist | I |
der Schüler verwechselt den Mittelwert mit dem Erwartungswert, also ist die Aufgabe deshalb nicht richtig gelöst | II |
der Schüler rechnet zulässigerweise mit der Normalverteilung | III |
Aufgabe 4192
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil b
Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Orange als Lieblingsfarbe nennt, beträgt 7 %. Unter n befragten Personen soll mit einer Wahrscheinlichkeit von mindestens 90 % mindestens 1 Person sein, die Orange als Lieblingsfarbe nennt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Anzahl n derjenigen Personen, die dafür mindestens befragt werden müssen.
[1 Punkt]
Aufgabe 1044
AHS - 1_044 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilung
Die Zufallsvariable X sei binomialverteilt mit n = 25 und p = 0,15. Es soll die Wahrscheinlichkeit bestimmt werden, sodass die Zufallsvariable X höchstens den Wert 2 annimmt.
- Aussage 1: \(\left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 2: \({0,85^{25}} + \left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {0,15^1} \cdot {0,85^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 3: \(\left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {0,15^1} \cdot {0,85^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 4: \(1 - \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 5: \(1 - \left[ {{{0,85}^{25}} + \left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {{0,15}^1} \cdot {{0,85}^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {{0,15}^2} \cdot {{0,85}^{23}}} \right]\)
- Aussage 6: \(\left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,85^2} \cdot {0,15^{23}}\)
Aufgabenstellung:
Kreuzen Sie den zutreffenden Term an!
Werbung für Region 2
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4194
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil d
Die Schüler/innen einer Schule wurden nach ihren Lieblingsfarben gefragt. In der nachstehenden Abbildung ist dargestellt, wie viel Prozent der Befragten die jeweilige Farbe als Lieblingsfarbe genannt haben.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, woran man erkennen kann, dass man auch mehr als eine Lieblingsfarbe nennen durfte.
[1 Punkt]
Aufgabe 1045
AHS - 1_045 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testung
Es werden zwei Tests TX und TY, bei denen man jeweils maximal zehn Punkte erwerben kann, auf ihre Lösungshäufigkeit untersucht. Bei mehr als fünf Punkten gilt der jeweilige Test als bestanden. Die Zufallsvariablen X und Y beschreiben die Anzahl der erreichten Punkte. Die beiden untenstehenden Abbildungen zeigen jeweils die Verteilungen der beiden Variablen X und Y.
- Aussage 1: Mit Test TY werden mehr Kandidatinnen/Kandidaten den Test bestehen als mit Test TX.
- Aussage 2: Beide Zufallsvariablen X und Y sind binomialverteilt.
- Aussage 3: Die Erwartungswerte sind gleich: E(X) = E(Y).
- Aussage 4: Die Standardabweichungen sind gleich: σ X = σ Y.
- Aussage 5: Der Test TX unterscheidet besser zwischen Kandidatinnen/Kandidaten mit schlechteren und besseren Testergebnissen.
Aufgabenstellung:
Kreuzen Sie diejenigen zwei Aussagen an, die aus den gegebenen Informationen ablesbar sind!
Aufgabe 1046
AHS - 1_046 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen einer Binomialverteilung
In den untenstehenden Grafiken sind Binomialverteilungen dargestellt.
Zum Weiterlesen bitte aufklappen:
- Grafik 1:
- Grafik 2:
- Grafik 3:
- Grafik 4:
- Grafik 5:
- Grafik 6:
Aufgabenstellung:
Kreuzen Sie diejenige Grafik an, die einer Binomialverteilung mit n = 20 und p = 0,9 zuzuordnen ist!