Wahrscheinlichkeit P
Hier findest du folgende Inhalte
Formeln
Einstufige Zufallsexperimente und deren Wahrscheinlichkeiten
Ein Zufallsexperiment ist ein grundsätzlich beliebig oft wiederholbarer "Versuch", welcher unter identischen Bedingungen zu 2 oder mehreren nicht vorhersagbaren Ergebnissenführt. Dabei ist das zeitlich jeweils nächste Ergebnis unabhängig von den zeitlich vorhergehenden Ergebnissen.
Ergebnismenge \(\Omega\)
Ein Ergebnis ist der spezifische Ausgang von einem Zufallsexperiment. Die Ergebnismenge, auch Ergebnisraum genannt, ist die Menge aller möglichen Ergebnisse Ai eines Zufallsexperiments, die grundsätzlich auftreten können.
\(\Omega = \left\{ {{A_1},{A_2},...,{A_n}} \right\}\)
- Ergebnis eines einmaligen Würfelwurfs: "2 Augen"
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Würfeln ist \(\Omega = \left\{ {1;2;3;4;5;6} \right\}\)
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Wurf einer Münze ist \(\Omega = \left\{ {{\rm{Kopf;Zahl}}} \right\}\)
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Würfeln mit 2 Würfeln ist \(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);...;\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);....\left( {6;6} \right)} \right\}\)
Ereignismenge \(P\left( \Omega \right)\)
Ereignismengen, auch Ereignisräume genannt, sind Teilmengen der Ergebnismenge.
\(P\left( \Omega \right) = \left\{ {A\left| {A \subseteq \Omega } \right.} \right\}\)
Beispiel Würfel:
- Ergebnismenge: \(\Omega = \left\{ {{1},{2},...,{6}} \right\}\)
- Ereignismenge "nur" die gerade Augenzahl: \(\Omega = \left\{ {{2},{4},{6}} \right\}\)
Elementarereignis
Das Elementarereignis Ai ist eine Teilmenge der Ergebnismenge \(\Omega\) mit genau einem Element.
\({A_i} \in \Omega\)
Zur Veranschaulichung:
Wirft man einen Würfel, so umfasst die Ergebnismenge \(\Omega = \left\{ {1,2,3,4,5,6} \right\}\) genau 6 Elementarereignisse : 1 Auge, 2 Augen, 3 Augen, 4 Augen, 5 Augen, 6 Augen
Gegenereignis
Das Gegenereignis A‘ tritt genau dann ein, wenn das Ereignis A nicht eintritt. Alle Elemente des Ereignisses A und seines Gegenereignisses A‘ ergeben zusammen die Ergebnismenge \(\Omega\).
\(A' + A = \Omega\)
Die Verneinung vom Ereignis E heißt Gegenereignis \(\overline E \). Für ein Ereignis E und sein Gegenereignis \(\overline E \) gilt folgender Zusammenhang:
\(P\left( E \right) = 1 - P\left( {\overline E } \right)\)
Wahrscheinlichkeit
Die Wahrscheinlichkeit ist ein Maß dafür, wie wahrscheinlich der Eintritt eines Ereignisses ist. Bei der wiederholten Durchführung eines Zufallsexperiments tritt eine Abfolge von einzelnen Elementarereignissen Ai auf. Man kann zwar nicht vorhersagen genau welches Elementarereignis als nächstes auftritt, aber man kann eine Aussage darüber machen, wie häufig ein bestimmtes Elementarereignis im Vergleich zu den anderen Elementarereignissen auftritt. Die Wahrscheinlichkeit nach Laplace P(A)=P(X=x) leitet sich aus der Häufigkeit eines bestimmten Elementarereignisses, im Verhältniss zur Häufigkeit aller Elementarereignisse ab.
\(0 \leqslant P\left( A \right) \leqslant 1\) | Die Wahrscheinlichkeit dafür, dass ein beliebiges Elementarereignis eintritt, muss zwischen 0 und 1 liegen |
\(P\left( \Omega \right) = 1\) | Die Wahrscheinlichkeit dafür, dass alle Elementarereignisse eintreten, muss 1 sein. |
Gleichwahrscheinlichkeit
Eine Gleichwahrscheinlichkeit liegt vor, wenn jedes der n Elementarereignisse die gleiche Wahrscheinlichkeit 1/n hat.
Unbedingte Wahrscheinlichkeit P(A)
Die unbedingte Wahrscheinlichkeit gibt an, wie hoch die Wahrscheinlichkeit für den Eintritt eines Ereignisses ist, unabhängig von irgend welchen Vorbedingungen.
Beispiel: Wie hoch ist die Wahrscheinlichkeit, dass morgen in Wien die Temperatur 30° C überschreitet? Antwort: Nieder, weil es nur ca. 30 derartige Hitzetage pro Jahr gibt.
Bedingte Wahrscheinlichkeit P(B│A)
Die bedingte Wahrscheinlichkeit P(B|A) ist die Wahrscheinlichkeit für das Eintreten von B, unter der Voraussetzung (Bedingung), dass bereits das Ereignis A eingetreten ist, also bei von einander stochastisch abhängigen Ereignissen
\(P\left( {{B}\left| {{A}} \right.} \right) = \dfrac{{P\left( {{A} \cap {B}} \right)}}{{P\left( {{A}} \right)}}\)
Obige Formel ist lediglich die umformulierte Multiplikationsregeln für Wahrscheinlichkeiten ("Und Regel").
Beispiel: Heute wird in Wien eine Temperatur von 35° C gemessen. Wie hoch ist die Wahrscheinlichkeit, dass morgen in Wien die Temperatur 30° C überschreitet? Antwort: Hoch, da sich die Klimalage nur alle paar Tage verändert.
Gegenwahrscheinlichkeit
Die Gegenwahrscheinlichkeit vom Ereignis A ist die Wahrscheinlichkeit dafür, dass das Ereignis A nicht eintritt. Oft ist es einfacher die Gegenwahrscheinlichkeit von einem Ereignis auszurechnen und daraus die Wahrscheinlichkeit des Ereignisses selbst zurückzurechnen.
\(\eqalign{ & P\left( {A'} \right) = 1 - P\left( A \right) \cr & P\left( A \right) = 1 - P\left( {A'} \right) \cr}\)
Anmerkung zur Notation:
\(P\left( {A'} \right) = P\left( {\neg A} \right)\)
Bernoulli Experiment
Ein Bernoulli Experiment ist ein Zufallsexperiment, welches
- genau 2 mögliche Ergebnisse hat: Treffer / Niete.
- Die Wahrscheinlichkeit p für einen Treffer oder für eine Niete muss aber keinesfalls 50:50 bzw. 0,5 sein. Die Formel für die Laplace Wahrscheinlichkeit ("günstige" durch "mögliche") gilt auch für Bernoulli Experimente, da diese ja nur ein Sonderfall vom Laplace Experiment sind.
Beispiel: gerade und ungerade Tage im Jänner:
Jeder Tag muss entweder gerade oder ungerade sein, aber es gibt im Jänner 15 gerade aber 16 ungerade Tage.
\(\eqalign{ & P\left( {X = {\text{gerader Tag}}} \right) = \dfrac{{15}}{{31}} \cr & P\left( {X = {\text{ungerader Tag}}} \right) = \dfrac{{16}}{{31}} \cr} \)
Gegenwahrscheinlichkeiten in einem Bernoulli Experiment
Wenn in einem Bernoulli Experiment p die Wahrscheinlichkeit für einen Treffer ist, dann ist 1-p die Wahrscheinlichkeit für eine Niete, man nennt dies die Gegenwahrscheinlichkeit.
Laplace Experiment
Ein Laplace Experiment ist ein Zufallsexperiment, welches n mögliche Ergebnisse hat, wobei die Wahrscheinlichkeit für jedes der n Ergebnisse gleich groß ist. Man spricht dann von der Laplace Wahrscheinlichkeit.
Beispiel für ein Laplace Experiment: Würfelwurf; Es gibt 6 mögliche Elementarereignisse, die die gleiche Wahrscheinlichkeit haben. 1 Auge, 2 Augen, 3 Augen, 4 Augen, 5 Augen, 6 Augen
Laplace Wahrscheinlichkeit
Die Laplace Wahrscheinlichkeit P(E) gibt den relativen Anteil der „günstigen“ Versuchsausgänge zu den „möglichen“ Versuchsausgängen an. Sie ist also eine Maßzahl für die Chance, dass ein bestimmtes Ereignis E bei mehreren möglichen Ereignissen eintritt. Alle Elementarergebnisse / Ausgänge müssen die gleiche Eintrittswahrscheinlichkeit haben.
\(P\left( E \right) = \dfrac{{{\text{Anzahl der günstigen Fälle}}}}{{{\text{Anzahl der möglichen Fälle}}}}\)
wobei: \(0 \leqslant P\left( E \right) \leqslant 1{\text{ und }}P\left( 0 \right) = 0{\text{ sowie P}}\left( \Omega \right) = 1\)
E | Ereignisse A, B |
P(A) | Wahrscheinlichkeit für das Eintreten vom Ereignis A |
P(A)=1 | Das Ereignis tritt sicher ein |
P(A)=0 | Das Ereignis tritt sicher nicht ein |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Zufallsvariable
Eine Zufallsvariable X ist eine Funktion, die jedem Ergebnis ω vom Ergebnisraum Ω eines Zufallsexperiments eine reelle Zahl x zuordnet.
\(X:\Omega \to R;\,\,\,X:\omega \to X\left( \omega \right) = x\)
Das Ergebnis einfacher Zufallsexperimente ist etwa eine Augenzahl beim Würfeln oder "Kopf" oder "Zahl" beim Werfen einer Münze. Bei komplexeren Zufallsexperimenten ist das Ergebnis vom Experiment meist praktischer Weise eine Zahl. Der Großbuchstabe X steht dabei für die Zufallsvariable und der Kleinbuchstabe x steht für den einen, ganz konkreten Wert, den X annimmt. Man sagt auch, dass x die Zufallsvariable X "realisiert" und dass diese konkrete Realisation mit einer bestimmten Wahrscheinlichkeit eintritt.
Man unterscheidet zwischen
- diskreten Zufallsvariablen, die durch eine Wahrscheinlichkeitsfunktion beschrieben werden
- stetigen Zufallsvariablen, die durch eine Dichtefunktion beschrieben werden
Wahrscheinlichkeitsverteilung
Die Wahrscheinlichkeitsverteilung beschreibt, mit welcher Wahrscheinlichkeit die einzelnen Ergebnisse eines Zufallsexperiments auftreten. Sie lässt sich auf 2 Arten, bei gleichem Informationsgehalt aber unterschiedlicher Darstellung, beschreiben:
Wahrscheinlichkeitsverteilung für diskrete Zufallsvariablen
Für diskrete Zufallsvariablen (Bernoulli Verteilung, Binomialverteilung, Poissonverteilung, hypergeometrische Verteilung) liegt die Wahrscheinlichkeit für das Auftreten von jedem einzelnen Wert zwischen 0 und 1. Die Summe der Einzelwahrscheinlichkeiten beträgt 1 (entsprechend 100%). Die Beschreibung erfolgt durch die
- Wahrscheinlichkeitsfunktion f(x): \(f\left( x \right) = P\left( {X = x} \right)\)
- Verteilungsfunktion F(x): \(F\left( x \right) = P\left( {X \leqslant x} \right) = \sum\limits_{{x_i} \leqslant x} {f\left( {{x_i}} \right)} \)
Wahrscheinlichkeitsverteilung für stetige Zufallsvariablen
Für stetige Zufallsvariablen (Normalverteilung, Gleichverteilung, Exponentialverteilung) beträgt die Wahrscheinlichkeit für das Auftreten jedes einzelnen Werts der Zufallsvariablen exakt Null. Die Beschreibung erfolgt durch die
- Dichtefunktion f(x): \(P\left( {a < X \le b} \right) = \int\limits_a^b {f\left( x \right)} \,\,dx = F\left( b \right) - F\left( a \right)\) wobei \(\int\limits_{ - \infty }^\infty {f\left( x \right)} \,\,{\mathop{\rm dx}\nolimits} = 1\)
- Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt immer Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)
- Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt immer Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)
- Verteilungsfunktion F(x): \(F\left( x \right) = P\left( {X \leqslant x} \right) = \int\limits_{ - \infty }^x {f\left( t \right)\,\,dt} \)
- Auf der y-Achse der Verteilungsfunktion kann man die Wahrscheinlichkeit \(P\left( {X \le {x_1}} \right)\) ablesen, höchstens den Wert x1 zu erreichen.
Diskrete Zufallsvariable
Die Anzahl der Ergebnisse des Zufallsexperiments ist endlich / abzählbar. Eine diskrete Zufallsvariable ist durch die Angabe ihres Wertebereichs \({x_1},{x_2},...,{x_n}\) und den Einzelwahrscheinlichkeiten fur das Auftreten von jedem Wert des Wertebereichs, also \(P\left( {X = {x_1}} \right) = {p_1},\,\,\,P\left( {X = {x_2}} \right) = {p_2},...P\left( {X = {x_n}} \right) = {p_n}\) vollständig definiert. Man spricht von der Wahrscheinlichkeitsfunktion, welche es nur für diskrete Zufallsvariablen gibt. (Bei stetigen Zufallsvariablen gibt es entsprechend die Dichtefunktion.)
Spezielle Verteilungen diskreter Zufallsvariabler sind
- Bernoulli-Verteilung
- Binomialverteilung (mit Zurücklegen)
- Poissonverteilung
- hypergeometrische Verteilung (ohne Zurücklegen)
Wahrscheinlichkeitsfunktion
Die Wahrscheinlichkeitsfunktion, welche es nur für diskrete Zufallsvariablen gibt, beschreibt eine diskrete Wahrscheinlichkeitsverteilung, indem sie jedem \(x \in {\Bbb R}\) einer Zufallsvariablen X genau eine Wahrscheinlichkeit P aus dem Intervall \(\left[ {0;1} \right]\) zuordnet.
\(f:x \to p\)
\(f:x \to \left\{ {\begin{array}{*{20}{l}} {P\left( {X = {x_i}} \right)}&{für\,\,x = {x_i}}\\ 0&{für\,\,\,x \ne {x_i}} \end{array}} \right.\)
Funktionsgraph der Wahrscheinlichkeitsfunktion
Im Funktionsgraph der Wahrscheinlichkeitsverteilung werden über jedem (diskreten) Wert x die jeweilige Wahrscheinlichkeit P(X=x) dargestellt, wobei die einzelnen Wahrscheinlichkeiten P(X=x) mit Hilfe der Laplace-Wahrscheinlichkeit berechnet werden. Im Stabdiagramm wird über jedem (diskreten) Wert x ein Stab (dünner Balken) aufgetragen, dessen Höhe der jeweilige Wahrscheinlichkeit P(X=x) entspricht.
Verteilungsfunktion
Die Verteilungsfunktion einer diskreten Zufallsvariablen, auch kumulative Verteilfunktion genannt, gibt die Wahrscheinlichkeit dafür an, dass die Zufallsvariable X höchstens den Wert x annimmt.
\(F\left( x \right) = P\left( {X \leqslant x} \right)\)
Sie ist eine monoton steigende Treppenfunktion mit Sprüngen an den Stellen xi und daher nicht stetig. Geometrisch entspricht die Wahrscheinlichkeit P(X=x) der Sprunghöhe der Verteilungsfunktion F(x) an der Stelle x.
F(x) ist für jedes x definiert und nimmt Werte von mindestens 0 bis höchstens 1 an.
\(\eqalign{ & \mathop {\lim }\limits_{x \to - \infty } F(x) = 0 \cr & \mathop {\lim }\limits_{x \to \infty } F(x) = 1 \cr} \)
Darüber hinaus gilt:
\(\eqalign{ & P\left( {X \geqslant x} \right) = 1 - P\left( {X < x} \right) \cr & P\left( {X > x} \right) = 1 - P\left( {X \leqslant x} \right) \cr} \)
Mittelwert einer Vollerhebung bzw. einer Stichprobe
Der arithmetische Mittelwert bezieht sich immer auf die grundsätzlich abzählbare Anzahl n an Durchgängen eines Zufallsexperiments. Er ist definiert als die Summe aller beobachteten Werte dividiert durch die Anzahl der beobachteten Werte.
\(\overline x = \dfrac{1}{n} \cdot \sum\limits_{i = 1}^n {{x_i}} \)
Unterschied Mittelwert und Erwartungswert
Wiederholt man das Zufallsexperiment unendlich oft, geht also \(n \to \infty \), so wird aus dem Mittelwert der Erwartungswert.
Erwartungswert
Der Erwartungswert einer diskreten Zufallsvariablen X, welche die diskreten Werte x1, x2, ..., xn mit den zugehörigen Wahrscheinlichkeiten P(X=x1), P(X=x2), ... P(X=xn) annimmt, errechnet sich aus der Summe der Produkte vom jeweiligen Wert xi und seiner Wahrscheinlichkeit P(X=xi). Merkregel: "Was passiert" mal "mit welcher Wahrscheinlichkeit passiert es".
\(E\left( X \right) = \mu = {x_1} \cdot P\left( {X = {x_1}} \right) + {x_2} \cdot P\left( {X = {x_2}} \right) + ... + {x_n} \cdot P\left( {X = {x_n}} \right) = \sum\limits_{i = 1}^n {{x_i} \cdot P\left( {X = {x_i}} \right)} \)
mit: \(P\left( E \right) = \frac{{{\text{Anzahl günstige Fälle}}}}{{{\text{Anzahl möglicher Fälle}}}}\)
Der Erwartungswert ist ein Maß für die mittlere Lage der Verteilung, und somit ein Lageparameter der beschreibenden Statistik.
- Ist die Wahrscheinlichkeit für jeden Versuch die selbe (z.B. bei binomialverteilten Experimenten), dann ist der Erwartungswert gleich dem arithmetischen Mittel.
- Ist die Wahrscheinlichkeit für jeden Versuch unterschiedlich , dann ist der Erwartungswert gemäß obiger Formel ein gewichtetes arithmetisches Mittel.
Erwartungswert für den Fall dass die diskrete Verteilung eine Binomialverteilung ist,
die nur zwei Werte (Erfolg / Misserfolg) annehmen kann und deren Trefferwahrscheinlichkeit immer p ist:
\(E\left( X \right) = n \cdot p\)
Physikalische Analogie
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x platziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft.
Varianz
Die Varianz einer diskreten Zufallsvariablen ist die mittlere quadratische Abweichung der Zufallsvariablen von ihrem Erwartungswert und somit ein Streumaß der beschreibenden Statistik.
\({\sigma _x}^2 = Var\left( X \right) = {\sum\limits_{i = 1}^n {\left( {{x_i} - E\left( x \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right)\)
Verschiebungssatz
Der Verschiebungssatz für diskrete Zufallsvariablen kann den Rechenaufwand für die Berechnung der Varianz verringern, es kann aber zum Verlust von Rechengenauigkeit kommen.
\({\sigma _x}^2 = Var\left( X \right) = E\left( {{X^2}} \right) - E{\left( X \right)^2} = \sum\limits_{i = 1}^n {{x_i}^2 \cdot P\left( {X = {x_i}} \right) - E{{\left( X \right)}^2}} \)
Standardabweichung
Die Varianz hat den Nachteil, als Einheit das Quadrat der Einheit der zugrunde liegenden Zufallsvariablen zu haben. Das ist bei der Standardabweichung (auf Grund der Quadratwurzel) und beim Erwartungswert nicht der Fall.
\({\sigma _x} = \sqrt {Var\left( X \right)} \)
Physikalische Analogie für den Erwartungswert und für die Varianz:
- Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x plaziert vorstellen.
- Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft
Illustration zur Veranschaulichung einer kleinen Varianz:
\(\eqalign{ & {x_1} = 3;\,\,\,\,\,{x_2} = 4;\,\,\,\,\,{x_3} = 5; \cr & P\left( {{x_1}} \right) = 0,2;\,\,\,\,\,P\left( {{x_2}} \right) = 0,6;\,\,\,\,\,P\left( {{x_3}} \right) = 0,2; \cr & E(X) = \mu = \sum\limits_{i = 1}^3 {{x_i} \cdot P\left( {X = {x_i}} \right)} = 3 \cdot 0,2 + 4 \cdot 0,6 + 5 \cdot 0,2 = 4 \cr & Var(X) = {\sum\limits_{i = 1}^3 {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\left( {3 - 4} \right)^2} \cdot 0,2 + {\left( {4 - 4} \right)^2} \cdot 0,6 + {\left( {5 - 4} \right)^2} \cdot 0,2 = 0,4 \cr} \)
Alternativ errechnet sich die Varianz unter Zuhilfenahme vom Verschiebungssatz wie folgt:
\(Var(X) = \sum\limits_{i = 3}^3 {{x_i}^2 \cdot P\left( {X = {x_i}} \right)} - {\left( {E\left( X \right)} \right)^2} = {3^2} \cdot 0,2 + {4^2} \cdot 0,6 + {5^2} \cdot 0,2 - {4^2} = 0,4\)
Illustration zur Veranschaulichung einer großen Varianz mit dem gleichen Erwartungswert:
\(\eqalign{ & {x_1} = 2;\,\,\,\,\,{x_2} = 4;\,\,\,\,\,{x_3} = 6; \cr & P\left( {{x_1}} \right) = 0,2;\,\,\,\,\,P\left( {{x_2}} \right) = 0,6;\,\,\,\,\,P\left( {{x_3}} \right) = 0,2; \cr & E(X) = \mu = \sum\limits_{i = 1}^3 {{x_i} \cdot P\left( {X = {x_i}} \right)} = 2 \cdot 0,2 + 4 \cdot 0,6 + 6 \cdot 0,2 = 4 \cr & Var(X) = {\sum\limits_{i = 1}^3 {\left( {{x_i} - E\left( X \right)} \right)} ^2} \cdot P\left( {X = {x_i}} \right) = {\left( {2 - 4} \right)^2} \cdot 0,2 + {\left( {4 - 4} \right)^2} \cdot 0,6 + {\left( {6 - 4} \right)^2} \cdot 0,2 = 1,6 \cr} \)
Alternativ errechnet sich die Varianz unter Zuhilfenahme vom Verschiebungssatz wie folgt:
\(Var(X) = \sum\limits_{i = 3}^3 {{x_i}^2 \cdot P\left( {X = {x_i}} \right)} - {\left( {E\left( X \right)} \right)^2} = {2^2} \cdot 0,2 + {4^2} \cdot 0,6 + {6^2} \cdot 0,2 - {4^2} = 1,6\)
Aufgaben
Aufgabe 1014
AHS - 1_014 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahrscheinlichkeit eines Defekts
Eine Maschine besteht aus den drei Bauteilen A, B und C. Diese haben die im nachstehenden Modell eingetragenen, voneinander unabhängigen Defekthäufigkeiten. Eine Maschine ist defekt, wenn mindestens ein Bauteil defekt ist.
Aufgabenstellung:
Berechnen Sie die Wahrscheinlichkeit \(P\left( {X \geqslant 2} \right)\), dass bei einer Maschine zwei oder mehr Bauteile defekt sind
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1044
AHS - 1_044 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilung
Die Zufallsvariable X sei binomialverteilt mit n = 25 und p = 0,15. Es soll die Wahrscheinlichkeit bestimmt werden, sodass die Zufallsvariable X höchstens den Wert 2 annimmt.
- Aussage 1: \(\left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 2: \({0,85^{25}} + \left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {0,15^1} \cdot {0,85^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 3: \(\left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {0,15^1} \cdot {0,85^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 4: \(1 - \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,15^2} \cdot {0,85^{23}}\)
- Aussage 5: \(1 - \left[ {{{0,85}^{25}} + \left( {\begin{array}{*{20}{c}} {25} \\ 1 \end{array}} \right) \cdot {{0,15}^1} \cdot {{0,85}^{24}} + \left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {{0,15}^2} \cdot {{0,85}^{23}}} \right]\)
- Aussage 6: \(\left( {\begin{array}{*{20}{c}} {25} \\ 2 \end{array}} \right) \cdot {0,85^2} \cdot {0,15^{23}}\)
Aufgabenstellung:
Kreuzen Sie den zutreffenden Term an!
Aufgabe 1050
AHS - 1_050 & Lehrstoff: WS 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bernoulli-Experiment
Beim Realisieren eines Bernoulli-Experiments tritt Erfolg mit der Wahrscheinlichkeit p mit 0 < p < 1 ein. Die Werte der binomialverteilten Zufallsvariablen X beschreiben die Anzahl der Erfolge beim n-maligen unabhängigen Wiederholen des Experiments. E bezeichnet den Erwartungswert, V die Varianz und σ die Standardabweichung.
- Aussage 1: \(E\left( X \right) = \sqrt {n \cdot p}\)
- Aussage 2: \(V\left( X \right) = n \cdot p \cdot \left( {1 - p} \right)\)
- Aussage 3: \(P\left( {X = 0} \right) = 0\)
- Aussage 4:\(P\left( {X = 1} \right) = p\)
- Aussage5: \(V\left( X \right) = {\sigma ^2}\)
Aufgabenstellung:
Kreuzen Sie die beiden für n > 1 zutreffenden Aussagen an!
Aufgabe 1051
AHS - 1_051 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelschreiber
Ein Kugelschreiber besteht aus zwei Bauteilen, der Mine (M) und dem Gehäuse mit dem Mechanismus (G). Bei der Qualitätskontrolle werden die Kugelschreiber einzeln entnommen und auf ihre Funktionstüchtigkeit hin getestet. Ein Kugelschreiber gilt als defekt, wenn mindestens ein Bauteil fehlerhaft ist.Im nachstehenden Baumdiagramm sind alle möglichen Fälle für defekte und nicht defekte Kugelschreiber aufgelistet.
A | \({p_1} = 0,95 \cdot 0,92\) |
B | \({p_2} = 0,05 \cdot 0,08 + 0,95 \cdot 0,08\) |
C | \({p_3} = 0,05 + 0,92\) |
D | \({p_4} = 0,05 + 0,95 \cdot 0,08\) |
E | \({p_5} = 0,05 \cdot 0,92\) |
F | \({p_6} = 1 - 0,05 \cdot 0,08\) |
Aufgabenstellung:
Ordnen Sie den Ereignissen E1, E2, E3 bzw. E4 die entsprechende Wahrscheinlichkeit p1, p2, p3, p4, p5 oder p6 (aus A bis F) zu!
Deine Antwort | |
E1: Eine Mine ist defekt und das Gehäuse ist in Ordnung. | |
E2: Ein Kugelschreiber ist defekt. | |
E3: Höchstens ein Teil ist defekt. | |
E4: Ein Kugelschreiber ist nicht defekt. |
Aufgabe 1111
AHS - 1_111 & Lehrstoff: WS 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfelergebnisse
Zwei Spielwürfel (6 Seiten, beschriftet mit 1 bis 6 Augen) werden geworfen und die Augensumme wird ermittelt.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die Wahrscheinlichkeit, das Ereignis „Augensumme 6“ zu würfeln, ist _____1______ Wahrscheinlichkeit, das Ereignis „Augensumme 9“ zu würfeln, weil ______2______ .
1 | |
größer als die | A |
kleiner als die | B |
gleich der | C |
2 | |
6 kleiner als 9 ist und das Ereignis „Augensumme 6“ somit seltener eintritt | I |
die Wahrscheinlichkeit beide Male 5/36 beträgt | II |
es nur vier Möglichkeiten gibt, die Augensumme „9“ zu würfeln, aber fünf Möglichkeiten, die Augensumme „6“ zu würfeln | III |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1141
AHS - 1_141 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
FSME-Infektion
Infizierte Zecken können durch einen Stich das FSME-Virus (Frühsommer-Meningoenzephalitis) auf den Menschen übertragen. In einem Risikogebiet sind etwa 3 % der Zecken FSME-infiziert. Die FSME-Schutzimpfung schützt mit einer Wahrscheinlichkeit von 98 % vor einer FSME-Erkrankung.
Aufgabenstellung:
Eine geimpfte Person wird in diesem Risikogebiet von einer Zecke gestochen. Berechnen Sie die Wahrscheinlichkeit, dass diese Person durch den Zeckenstich an FSME erkrankt!
Aufgabe 1232
AHS - 1_232 & Lehrstoff: WS 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Augensumme
Zwei herkömmliche Spielwürfel werden geworfen und die Augensumme wird ermittelt.
Aufgabenstellung
Untersuchen Sie, welches der Ereignisse „Augensumme 6“ oder „Augensumme 9“ wahrscheinlicher ist, und begründen Sie Ihre Aussage!
Aufgabe 1233
AHS - 1_233 & Lehrstoff: WS 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reißnagel
Wenn man einen Reißnagel fallen lässt, bleibt dieser auf eine der beiden dargestellten Arten liegen.
Aufgabenstellung:
Beschreiben Sie eine Methode, wie man die Wahrscheinlichkeiten für die beiden Fälle herausfinden kann!
Aufgabe 1236
AHS - 1_236 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reihenfolge
Für eine Abfolge von fünf verschiedenen Bildern gibt es nur eine richtige Reihung. Diese Bilder werden gemischt und, ohne sie anzusehen, in einer Reihe aufgelegt.
Aufgabenstellung
Bestimmen Sie die Wahrscheinlichkeit P (in %) dafür, dass die richtige Reihenfolge erscheint!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1291
AHS - 1_291 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Binomialverteilte Zufallsvariable
Die Zufallsvariable X sei binomialverteilt mit n = 8 und p = 0,25.
x | P(x) |
0 | 0,1001 |
1 | 0,2670 |
2 | 0,3115 |
3 | 0,2076 |
4 | 0,0865 |
5 | 0,0231 |
6 | 0,0038 |
7 | 0,0004 |
8 | 0,00002 |
Aufgabenstellung:
μ ist der Erwartungswert, σ die Standardabweichung der Verteilung.
Berechnen Sie die folgende Wahrscheinlichkeit: \(P\left( {\mu - \sigma < X < \mu + \sigma } \right)\)
Aufgabe 1292
AHS - 1_292 & Lehrstoff: WS 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flaschensortieranlage
Auf einer Sortieranlage werden 500 Flaschen von einem Scanner untersucht – es wird die Art des Kunststoffes ermittelt. p % der Flaschen werden richtig erkannt und in die bereitgestellten Behälter einsortiert. Die Werte der binomialverteilten Zufallsvariablen X beschreiben die Anzahl k der falschen Entscheidungen beim vorgegebenen Stichprobenumfang.
k | P(X=k) |
10 | 0,0003 |
11 | 0,0007 |
12 | 0,0015 |
13 | 0,0029 |
14 | 0,0053 |
15 | 0,009 |
16 | 0,0144 |
17 | 0,0216 |
18 | 0,0305 |
19 | 0,0408 |
20 | 0,0516 |
21 | 0,0621 |
22 | 0,0712 |
23 | 0,0778 |
24 | 0,0814 |
25 | 0,0816 |
26 | 0,0785 |
27 | 0,0725 |
28 | 0,0644 |
29 | 0,0552 |
30 | 0,0456 |
Aufgabenstellung:
Berechnen Sie mithilfe der gegebenen Tabelle die Wahrscheinlichkeit \(P\left( {22 < X \leqslant 27} \right)\)und markieren Sie diese in der Grafik.
Aufgabe 1398
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Tennisspiel
Stefan und Helmut spielen im Training 5 Sätze Tennis. Stefan hat eine konstante Gewinnwahrscheinlichkeit von 60 % für jeden gespielten Satz.
Aufgabenstellung:
Es wird folgender Wert berechnet: \(\left( {\begin{array}{*{20}{c}} 5\\ 3 \end{array}} \right) \cdot {0,4^3} \cdot {0,6^2} = 0,2304\). Geben Sie an, was dieser Wert im Zusammenhang mit der Angabe aussagt!