Schließende Statistik
Formel
Schließende Statistik
Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen.
Stichprobe
Die Stichprobe ist eine repräsentative Teilmenge, die der Grundgesamtheit zufällig entnommen wurde. Sie gilt als repräsentativ, wenn sie die typischen Merkmale der Grundgesamtheit repräsentiert.
Wahrscheinlichkeitsrechnung
Die Wahrscheinlichkeitsrechnung ist die Grundlage der schließenden Statistik. Sie dient dazu, die Ergebnisse von Zufallsexperimenten auszuwerten, da deren Ausgang ja nicht exakt vorhersagbar ist.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Stochastik | Wissenswertes über: Kombinatorik, Beschreibende Statistik - Lagemaße + Streumaße, Schließende Statistik - Wahrscheinlichkeitsrechnung und Exporative Statistik - Data Mining |
Aktuelle Lerneinheit
Schließende Statistik | Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen. Die Stichprobe ist eine repräsentative Teilmenge, die der Grundgesamtheit zufällig entnommen wurde. Die Wahrscheinlichkeitsrechnung wertet die Ergebnisse von Zufallsexperimenten aus. |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Explorative Statistik | Big Data steht für den Umgang mit großen Datenvolumen (Big Data), vor allem mit besonders großen, dynamischen, schnelllebigen und/oder komplexen Massendaten. |
Beschreibende Statistik | Die beschreibende bzw. deskriptive Statistik stellt große Datenmengen (Vollerhebung, Grundgesamtheit) übersichtlich dar und verdichtet diese, damit charakteristische Eigenschaften der Datenmenge durch einfache Kennzahlen ausgedrückt werden können. |
Kombinatorik | Untersucht die Fragestellung, wie viele Möglichkeiten es gibt, eine endliche Anzahl an Objekte anzuordnen oder auszuwählen. |
Vertiefe dein Wissen zur aktuellen Lerneinheit
Standardnormalverteilung | Unter der Standardnormalverteilung versteht man die mit μ=0 und σ=1 standardisierte Normalverteilung. Mit Hilfe der z-Transformation rechnet man beliebige Erwartungswerte bzw. Standardabweichungen auf die Standardnormalverteilung um. |
Konfidenzintervall | Bei der Ermittlung statistischer Parameter prüft man selten alle möglichen Ergebnisse, sondern man beschränkt sich auf eine Stichprobe. Dadurch ist die Messung aber Ungenauigkeiten unterworfen. Konfidenzintervalle definieren einen Bereich, in dem man mit einer bestimmten Wahrscheinlichkeit darauf vertrauen darf, dass sich der wahre Wert darin befindet. |
Gleichverteilung - Disparität - Konzentration | Von Gleichverteilung spricht man, wenn jeder Merkmalsträger den gleichen Anteil an der Merkmalssumme auf sich vereint. |
Gedächtnislosigkeit der Exponentialverteilung und der geometrischen Verteilung | Sie gibt die Wahrscheinlichkeit an, dass ein Ereignis (zB ein Produktfehler) nach weiteren t Minuten eintritt, nachdem man schon s Minuten gewartet hat. Man spricht auch von der "Nichtalterungseigenschaft". |
Exponentialverteilung | Die Exponetialfunktion wird zur Modellierung von der Zeit zwischen 2 Ereignissen oder der Lebensdauer von Bauteilen verwendet. |
Rechteckverteilung | Die Rechteckverteilung im Intervall [a, b] ist eine stetige Gleichverteilung, bei der jedes Ergebnis gleich wahrscheinlich ist. |
Normalverteilung | Die Normalverteilung, auch gaußsche-Glockenverteilung genannt, ist zusammen mit ihrem Spezialfall der Standardnormalverteilung die wichtigste Verteilungsfunktion. |
Hypergeometrische Verteilung | Die hypergeometrische Verteilung ist eine diskrete Verteilung. Die Grundgesamtheit vermindert sich aber bei jeder Wiederholungen, denn es handelt sich um ein „Ziehen ohne Zurücklegen“. |
Poissonverteilung | Die Poissonverteilung ist eine diskrete Verteilung. Sie ist ein Grenzfall der Binomialverteilung wenn n sehr groß (größer 100) ist, verbunden mit einer sehr kleinen Erfolgswahrscheinlichkeit die gegen Null konvergiert |
Bernoulli-Verteilung | Die Bernoulli-Verteilung ist die einfachste diskrete Verteilung. Sie entsteht, wenn man ein Bernoulli Experiment (welches nur 2 mögliche Ausgänge hat) genau 1 Mal ausführt. Die Bernoulli Verteilung ist daher ein Spezialfall der Binomialverteilung für n=1. |
Histogramm der Häufigkeitsverteilung | Histogramme schauen ähnlich aus wie Balkendiagramme - man benötigt zu deren grafischer Darstellung die jeweilige Balkenbreite (Klassenbreite) und die Balkenhöhe (=relativer / prozentueller Anteil der Messwerte) |
Stetige Zufallsvariable | Man spricht von einer stetigen Zufallsvariablen, wenn die Anzahl der Ergebnisse des Zufallsexperiments unendlich, also nicht abzählbar, ist. |
Diskrete Zufallsvariable | Für diskrete Zufallsvariablen ist die Anzahl der Ergebnisse eines Zufallsexperiments endlich, also abzählbar. Sie wird durch eine Wahrscheinlichkeitsfunktion beschrieben. |
Zufallsvariable | Eine Zufallsvariable X ordnet jedem Ergebnis ω vom Ergebnisraum Ω eines Zufallsexperiments eine reelle Zahl x zu. |
Einstufige Zufallsexperimente und deren Wahrscheinlichkeiten | Ein Zufallsexperiment ist ein grundsätzlich beliebig oft wiederholbarer "Versuch", welcher unter identischen Bedingungen zu 2 oder mehreren nicht vorhersagbaren Ergebnissen führt. Wir unterscheiden zwischen Bernoulli und Laplace Experiment. |