Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Aufgabe B_508: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe mit 3 Teilaufgaben
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4438
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil a
Bei den Olympischen Sommerspielen 2008 in Peking siegte Usain Bolt im Finale des 100-Meter-Laufes der Männer. Die Silbermedaille ging an Richard Thompson. Die jeweilige Geschwindigkeit der beiden Läufer bei diesem Lauf kann durch die nachstehenden Funktionen modellhaft beschrieben werden.
\(\begin{gathered} {v_B}\left( t \right) = 12,151 \cdot \left( {1 - {e^{ - 0,684 \cdot t}}} \right) \hfill \\ {v_T}\left( t \right) = 12,15 \cdot \left( {1 - {e^{ - 0,601 \cdot t}}} \right) \hfill \\ \end{gathered} \)
t |
Zeit ab dem Start in s |
vB(t) |
Geschwindigkeit von Usain Bolt zur Zeit t in m/s |
vT(t) |
Geschwindigkeit von Richard Thompson zur Zeit t in m/s |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Beschleunigung von Usain Bolt 1 s nach dem Start.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, was mit dem nachstehenden Ausdruck im gegebenen Sachzusammenhang berechnet wird.
\(\dfrac{1}{{8 - 5}} \cdot \int\limits_5^8 {{v_B}\left( t \right)} \,\,dt\)
Usain Bolt überquerte die Ziellinie 9,69 s nach dem Start.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, wie weit Richard Thompson von der Ziellinie entfernt war, als Usain Bolt diese überquerte.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4439
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil b
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tomasz Majewski im Kugelstoßfinale der Männer. Die Flugbahn der Kugel kann modellhaft durch den Graphen der Funktion h mit
\(h\left( x \right) = a \cdot {x^2} + b \cdot x + c\)
beschrieben werden.
x, h(x) |
Koordinaten der Flugbahn in m |
An der Stelle x = 0 kann die Geschwindigkeit der Kugel durch den Geschwindigkeitsvektor \(\overrightarrow {{v_M}} \) beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein. Verwenden Sie dabei den Winkel α.
\(\overrightarrow {{v_M}} = \left| {\overrightarrow {{v_M}} } \right| \cdot \left( {\begin{array}{*{20}{c}} {\boxed{}} \\ {\boxed{}} \end{array}} \right)\)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass gilt:
tan(α) = b
[0 / 1 P.]
Aufgabe 4440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil c
Bei den Olympischen Sommerspielen 2008 in Peking siegte Tirunesh Dibaba im Finale des 10 000-Meter-Laufes der Frauen. In der nachstehenden Tabelle sind einige Distanzen und die zugehörigen Zwischenzeiten für die erste Hälfte des Laufes angegeben.
Distanz in m | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 |
Zeit in s | 180,5 | 360,2 | 543,8 | 726,6 | 910,0 |
Datenquelle: https://sportsscientists.com/2008/08/beijng-2008-10000-m-women/ [15.12.2020].
Die Zeit soll in Abhängigkeit von der Distanz durch eine lineare Regressionsfunktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung dieser linearen Funktion.
[0 / 1 P.]
Tirunesh Dibaba benötigte für diesen 10 000-Meter-Lauf insgesamt 29 min 54,66 s.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des relativen Fehlers, wenn zur Berechnung der Laufzeit von Tirunesh Dibaba die ermittelte Regressionsfunktion verwendet wird.
[0 / 1 P.]