Hauptform der Geradengleichung
Bei der Hauptform der Geraden sind die Steigung k der Geraden und der Ordinatenabschnitt der Geraden gegeben
Hier findest du folgende Inhalte
Formeln
Geradengleichungen und deren vier Darstellungsformen
In der analytischen Geometrie werden Geraden mit der Hilfe von Vektoren dargestellt, wofür es 1) die Parameterform, 2) die Normalvektorform und 3) die allgemeine Form gibt. Zusätzlich gibt es noch 4) die vektorfreie oder Hauptform der Geraden.
Bezeichnungen
g | beliebige Gerade im Koordinatensystem |
X | beliebiger Punkt auf der Geraden |
\(\lambda \) | Parameter, welcher den Richtungsvektor verlängert, verkürzt und/oder dessen Orientierung umkehrt |
\(\overrightarrow r\) | Richtungsvektor |
A, B, P | Punkte auf der Geraden |
\(\overrightarrow n\) | Normalvektor, der im rechten Winkel zur Geraden g steht |
\(\overrightarrow {{n_0}}\) | Einheitsvektor vom Normalvektor, der im rechten Winkel zur Geraden g steht |
k | Steigung der Geraden |
d | Abschnitt auf der y-Achse, auch Ordinatenabschnitt genannt |
\(\alpha\) | Steigungswinkel der Geraden (=Winkel zwischen g und der x-Achse) |
Parameterform der Geradengleichung
Bei der Parameterform der Geraden benötigt man einen beliebigen Punkt, den "Aufpunkt" A bzw. P auf der Geraden und einen Vektor \(\overrightarrow r \) oder einen zweiten Punkt B. Mit Hilfe dieser beiden Bestimmungsgrößen kann eine Gerade in der Ebene und im Raum eindeutig festgelegt werden. Der Name "Parameterform" leitet sich davon ab, dass man alle Punkte der Geraden dadurch erhält, indem man für den Parameter \(\lambda\) unterschiedliche Zahlenwerte einsetzt, wobei: \(\lambda \in {\Bbb R}\).
Punkt-Richtungsform der Geradengleichung
Bei der Punkt-Richtungsform der Geraden setzt am Aufpunkt A der Richtungsvektor r auf, der in die Richtung der Geraden zeigt. Die Gerade wird also durch einen Punkt und einen Richtungsvektor definiert
\(\begin{array}{l} g:X = A + \lambda \cdot \overrightarrow r \\ g:\left( {\begin{array}{*{20}{c}} x\\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{A_x}}\\ {{A_y}} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}} {{r_x}}\\ {{r_y}} \end{array}} \right) \end{array}\)
Zwei-Punktform der Geradengleichung
Bei der Zwei-Punktform der Geraden setzt an den Aufpunkt A ein Vektor an, der vom Aufpunkt zu einem beliebigen zweiten Punkt B auf der Geraden weist. Die Gerade wird also durch zwei Punkte definiert
\(g:X = A + \lambda \overrightarrow { \cdot AB} \)
Normalform der Geradengleichung (nur in R2 )
Bei der Normalvektorform der Geraden g wird ein Punkt P auf der Geraden und ein Vektor \(\overrightarrow n \) benötigt, der normal (also im rechten Winkel) auf die Gerade g steht. Mit Hilfe dieser beiden Bestimmungsgrößen kann zwar eine Gerade in der Ebene nicht aber im Raum eindeutig festgelegt werden.
Vektorschreibweise der Normalform der Geradengleichung
Sind von einer Geraden g ein Punkt P und ihr Normalvektor \( \overrightarrow n\) gegeben, so gilt für alle Punkte X der Geraden, dass der bekannte Normalvektor \( \overrightarrow n\) und alle Vektoren \(\overrightarrow {PX} \) normal auf einander stehen, womit ihr Skalarprodukt Null ist. Die Gerade ist also duch einen Punkt und eine Normale auf die eigentliche Gerade definiert.
\(\begin{array}{l} g:\overrightarrow n \cdot X - \overrightarrow n \cdot P = 0\\ g : \overrightarrow n \cdot \left( {X - P} \right) = 0 \end{array}\)
Hesse'sche Normalform der Geradengleichung
Bei der Normalvektorform der Geraden g wird ein Punkt P auf der Geraden und ein Vektor n benötigt, der normal (also im rechten Winkel) auf der Geraden g steht. Ersetzt man den Normalvektor \( \overrightarrow n\) durch dessen Einheitsvektor \(\overrightarrow {{n_0}}\), so erhält man die Hesse'sche Normalform. Die Gerade ist also durch einen Punkt und einen Vektor der Länge 1 in Richtung der Normalen auf die eigentliche Gerade definiert.
\(\overrightarrow {{n_0}} \circ \left( {X - P} \right) = 0\)
Allgemeine Form der Geradengleichung
Bei der allgmeinen bzw. impliziten Form einer Geraden sind die Koeffizienten a und b zugleich die Koordinaten des Normalvektors \(\overrightarrow n = \left( {\begin{array}{*{20}{c}} a\\ b \end{array}} \right)\) und die Variablen x und y sind die Koordinaten aller jener Punkte \(X\left( {\begin{array}{*{20}{c}} x\\ y \end{array}} \right)\), die auf der Geraden liegen. Es handelt sich bei dieser Darstellungsform um eine lineare Funktion in impliziter Schreibweise, bei der die Koeffizienten a und b jedoch nicht willkürlich, sondern die Koordinaten vom Normalvektor sind.
\(\begin{array}{l} g:a \cdot x + b \cdot y + c = 0\\ g(x) = - \dfrac{a}{b} \cdot x - \dfrac{c}{b}\\ \overrightarrow n = \left( {\begin{array}{*{20}{c}} {{n_x}}\\ {{n_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} a\\ b \end{array}} \right) \end{array}\)
Die Koeffizienten der allgemeinen Form der Geradengleichung sind zugleich die Koordinaten vom Normalvektor.
Hauptform der Geradengleichung
Bei der Hauptform der Geraden sind die Steigung k der Geraden und der Ordinatenabschnitt der Geraden gegeben. Man nennt diese Darstellungsform auch die explizite Form der Geraden. Dabei handelt es sich um eine lineare Funktion also eine vektorfreie Form der Geraden.
Hauptform einer Geraden,
\(\eqalign{ & g:y = kx + d \cr & y = k\left( {x - {A_x}} \right) + {A_y} \cr}\)
Umrechnung Parameterform in die parameterfreie Hauptform der Geraden
Um die Geradengleichung von der Parameterform \(X = P +\lambda \cdot \overrightarrow r = \left( {\begin{array}{*{20}{c}} {{P_x}}\\ {{P_y}} \end{array}} \right) +\lambda \cdot \left( {\begin{array}{*{20}{c}} {{r_x}}\\ {{r_y}} \end{array}} \right)\) in die parameterfreie (Haupt)Form \(y = kx + d\) zu bringen, spaltet man sie in eine Gleichung für die x-Koordinate und in eine Gleichung für die y-Koordinate auf und eliminiert den Parameter t
\(\begin{array}{*{20}{c}} x& = &{{P_x}}& + &{\lambda \cdot {r_x}}\\ y& = &{{P_y}}& + &{\lambda \cdot {r_y}} \end{array}\)
Umrechnung parameterfrei Hauptform in die Parameterform der Geraden
Um die Geradengleichung von der parameterfreien (Haupt)Form \(y = kx + d\) in die Parameterform \(X = P + \lambda \cdot \overrightarrow r = \left( {\begin{array}{*{20}{c}} {{P_x}}\\ {{P_y}} \end{array}} \right) + \lambda \cdot \left( {\begin{array}{*{20}{c}} {{r_x}}\\ {{r_y}} \end{array}} \right)\) zu bringen,
- ermittelt man einen bel. Punkt auf der Geraden, z. B.: in dem man y=0 setzt
- ermittelt man den Normalvektor \(\overrightarrow n\), dessen Koordinaten die Koeffizienten der Hauptform \(y - kx = d\) sind, und wendet anschließend die Links-Kipp-Regel an: \(\overrightarrow r = \left( {\begin{array}{*{20}{c}} { - {n_y}}\\ {{n_x}} \end{array}} \right)\)
Umrechnung von der Parameterform auf die allgemeine Form der Geraden
Gegeben ist die Parameterform in Koordinatenschreibweise
\(g:\left( {\begin{array}{*{20}{c}} x\\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{A_x}}\\ {{A_y}} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}} \end{array}} \right)\)
1. Schritt: Zeilenweises Anschreiben der Parameterform:
\(\begin{array}{*{20}{c}} x& = &{{A_x}}& + &{t \cdot {a_x}}\\ y& = &{{A_y}}& + &{t \cdot {a_y}} \end{array}\)
2. Schritt: t eliminieren vom Parameter t:
\(\begin{array}{l} y - {A_y} = t \cdot {a_y} \to t = \dfrac{{y - {A_y}}}{{{a_y}}}\\ x = {A_x} + \dfrac{{y - {A_y}}}{{{a_y}}} \cdot {a_x}\,\,\,\,\,\left| {:{a_x}} \right.\\ \dfrac{1}{{{a_x}}} \cdot x = \dfrac{{{A_x}}}{{{a_x}}} + \dfrac{1}{{{a_y}}} \cdot y - \dfrac{{{A_y}}}{{{a_y}}} \end{array}\)
3. Schritt: Anschreiben in der allgemeinen Form:
\(\dfrac{1}{{{a_x}}} \cdot x - \dfrac{1}{{{a_y}}} \cdot y = \dfrac{{{A_x}}}{{{a_x}}} - \dfrac{{{A_y}}}{{{a_y}}}\)
Umrechnung von der Normalform bzw. der Parameterform in die Hauptform der Geraden
\(\begin{array}{l} k = \dfrac{{\Delta y}}{{\Delta x}} = - \dfrac{{{n_x}}}{{{n_y}}} = \dfrac{{{B_y} - {A_y}}}{{{B_x} - {A_x}}} = tan\left( \alpha \right) = - \dfrac{a}{b}\\ d = \dfrac{c}{{{n_y}}} = - \dfrac{c}{b} \end{array}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgaben
Aufgabe 6021
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Graph Gf einer in \({\Bbb R}\) definierten Funktion
\(f:x \mapsto a \cdot {x^4} + b \cdot {x^3}{\text{ mit }}a,b \in {\Bbb R}\)
Punkt O(0 | 0) einen Wendepunkt mit waagrechter Tangente.
W(1| -1) ist ein weiterer Wendepunkt von Gf .
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie mithilfe dieser Information die Werte von a und b.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie Lage und Art des Extrempunkts von Gf .
Die Gerade g schneidet Gf in den Punkten W und (2 | 0).
3. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse Gf sowie die Gerade g in ein Koordinatensystem ein.
4. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Gleichung der Geraden g an.
Gf und die x-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade g in zwei Teilflächen zerlegt wird.
5. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00
Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1255
AHS - 1_255 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Gleichung - lineare Funktion
Eine lineare Funktion y = f (x) kann durch eine Gleichung \(a \cdot x + b \cdot y = 0{\text{ mit }}a,b \in {{\Bbb R}^ + }\)
Aufgabenstellung:
Geben Sie einen Funktionsterm von f an und skizzieren Sie, wie der Graph aussehen könnte!
Aufgabe 4045
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Catering - Aufgabe B_410
Teil c
In der nachstehenden Abbildung ist der Lösungsbereich zur Ermittlung des maximalen Gewinns beim Catering für ein anderes Event dargestellt. Die Gerade, für die der optimale Wert der Zielfunktion angenommen wird, ist strichliert eingezeichnet.
Die Punkte P1, P2, P3 und P4 liegen auf dem Koordinatengitter.
1. Teilaufgabe - Bearbeitungszeit 11:20
Erstellen Sie mithilfe der eingezeichneten Punkte die Gleichungen der beiden Begrenzungsgeraden, die zum Bestimmen der Produktionsmengen für den maximalen Gewinn benötigt werden.
[2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie diejenigen Stückzahlen an pikantem Fingerfood und Dessert, bei denen ein maximaler Gewinn erzielt wird.
[1 Punkt]
Aufgabe 1132
AHS - 1_132 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gerade in Parameterform
Gegeben ist die Gerade g mit der Gleichung \(3x - 4y = 12\)
Aufgabenstellung:
Geben Sie eine Gleichung von g in Parameterform an!
Aufgabe 1100
AHS - 1_100 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Monotonie einer linearen Funktion
Gegeben ist die Gerade mit der Gleichung \(y = - 2x + 4\). Auf dieser Geraden liegen die Punkte \(A = \left( {{x_A}\left| {{y_A}} \right.} \right)\) und \(B = \left( {{x_B}\left| {{y_B}} \right.} \right)\).
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Wenn \({x_A} < {x_B}\) ist, gilt _____1______, weil die Gerade _______2_______ ist.
1 | |
\({y_A} < {y_B}\) | A |
\({y_A} = {y_B}\) | B |
\({y_A} > {y_B}\) | C |
2 | |
monoton steigend | I |
monoton fallend | II |
konstant | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1740
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewinnfunktion
Die unten stehende Abbildung zeigt eine lineare Kostenfunktion \(K:x \to K\left( x \right)\) une eine lineare Erlösfunktion \(E:x \to E\left( x \right){\rm{ mit }}x \in \left[ {0;6} \right]\)
Für die Gewinnfunktion \(G:x \to G\left( x \right)\) gilt für alle \(x \in \left[ {0;6} \right]:\,\,\,\,\,G\left( x \right) = E\left( x \right) - K\left( x \right)\)
Aufgabenstellung
Zeichnen Sie in der nachstehenden Abbildung den Graphen von G ein. [0 / 1 Punkt]
Aufgabe 1214
AHS - 1_214 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Anstieg einer parallelen Geraden
Gegeben sind die zwei Geraden g und h:
\(g:\,\,\,\,\,X = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1\\ 4 \end{array}} \right)\)
\(h:\,\,\,\,\,y = k \cdot x + 7\)
Aufgabenstellung:
Bestimmen Sie den Wert von k so, dass g und h zueinander parallel sind!
Aufgabe 1364
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vergleich dreier Geraden
In der untenstehenden Graphik sind drei Geraden g1, g2 und g3 dargestellt. Es gilt:
\(\eqalign{ & {g_1}:y = {k_1} \cdot x + {d_1} \cr & {g_2}:y = {k_2} \cdot x + {d_2} \cr & {g_3}:y = {k_3} \cdot x + {d_3} \cr} \)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: \({k_1} < {k_2}\)
- Aussage 2: \({d_3} > {d_2}\)
- Aussage 3: \({k_2} > {k_3}\)
- Aussage 4: \({k_3} < {k_1}\)
- Aussage 5: \({d_1} < {d_3}\)
Aufgabe 1862
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Längenausdehnung einer Brücke
Die Länge einer bestimmten Brücke ist abhängig von ihrer Temperatur.
- Bei einer Temperatur der Brücke von –14 °C ist diese 300 m lang.
- Bei einer Erwärmung um 25 °C dehnt sie sich um 0,1 m aus.
Die lineare Funktion l beschreibt modellhaft die Länge dieser Brücke in Abhängigkeit von ihrer Temperatur T. Dabei wird jeder Temperatur T ∈ [–20 °C; 40 °C] die Länge der Brücke l(T) zugeordnet (T in °C, l(T) in m).
Aufgabenstellung:
Stellen Sie eine Funktionsgleichung von l auf.
l(T) =
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
