Multiplikation eines Vektors mit einem Skalar
Unter Skalarmultiplikation versteht man die Multiplikation eines Vektors mit einer reellen Zahl λ (Skalar). Der resultierende Vektor hat die λ-fache Länge des Ausgangsvektors. Für negative λ sind der Ausgangsvektor und der resultierende Vektor entgegengesetzt orientiert.
Hier findest du folgende Inhalte
Formeln
Multiplikation von Vektoren
Bei der Multiplikation von Vektoren unterscheidet man zwischen
- Multiplikation eines Vektors mit einem Skalar. Das Resultat ist ein in der Länge veränderter Vektor
- Skalarprodukt als Multiplikation zweier Vektoren. Das Resultat ist ein Skalar. Wichtige Anwendung: Orthogonalitätskriterium und Winkel zwischen 2 Vektoren
- Kreuzprodukt als Multiplikation zweier Vektoren. Das Resultat ist ein dritter Vektor, der auf den beiden Ausgangsvektoren normal steht. Wichtige Anwendung: Parallelitätskriterium und Fläche des von 2 Vektoren aufgespannten Parallelogramms
- Spatprodukt als Multiplikation dreier Vektoren. Dabei wird zuerst das Kreuzprodukt zweier Vektoren gebildet. Mit dem daraus resultierenden Vektor und dem dritten gegebenen Vektor wird anschließend das Skalarprodukt gebildet. Das Resultat ist ein Skalar. Wichtige Anwendung: Volumen eines von 3 Vektoren aufgespannten Körpers
Multiplikation eines Vektors mit einem Skalar
Unter Skalarmultiplikation versteht man die Multiplikation eines Vektor \(\overrightarrow a \) mit einer reellen Zahl λ (Skalar). Der resultierende Vektor hat die λ-fache Länge des Ausgangsvektors. Für negative λ sind der Ausgangsvektor und der resultierende Vektor entgegengesetzt orientiert.
\(\lambda \cdot \overrightarrow a = \left( \matrix{ \lambda \cdot {a_x} \hfill \cr \lambda \cdot {a_y} \hfill \cr} \right)\,\,\,\,\,{\rm{wobei}}\,\,\,\,\,\lambda \overrightarrow a \left\| {\overrightarrow a } \right.\)
\(c \cdot \overrightarrow v = c \cdot \left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}}\\ {{v_z}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {c \cdot {v_x}}\\ {c \cdot {v_y}}\\ {c \cdot {v_z}} \end{array}} \right)\)
Rechenregeln im Zusammenhang mit der Multiplikation eines Vektors mit einem Skalar
\(\eqalign{ & \lambda \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = \lambda \cdot \overrightarrow a + \lambda \cdot \overrightarrow b \cr & \left( {\lambda + \mu } \right) \cdot \overrightarrow a = \lambda \cdot \overrightarrow a + \mu \cdot \overrightarrow a \cr & 0 \cdot \overrightarrow a = \overrightarrow 0 \cr}\)
Skalarprodukt
Das Skalarprodukt bzw. das innere Produkt zweier Vektoren ordnet zwei Vektoren eine reelle Zahl zu und wird gebildet, in dem komponentenweise multipliziert wird, und anschließend die Summe der Produkte gebildet wird. Es findet Anwendung bei der Winkelberechnung zwischen 2 Vektoren und beim Orthogonalitätskriterium welches besagt, dass wenn zwei Vektoren senkrecht auf einander stehen, ihr Skalarprodukt gleich Null ist
\( \eqalign{ & \overrightarrow a \circ \overrightarrow b = \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr } } \right) \cdot \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr } } \right) = {a_x} \cdot {b_x} + {a_y} \cdot {b_y} = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \varphi \cr & \cos \varphi = {{\overrightarrow a \circ \overrightarrow b } \over {\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|}} = {{{a_x} \cdot {b_x} + {a_y} \cdot {b_y}} \over {\sqrt {{a_x}^2 + {a_y}^2} .\sqrt {{b_x}^2 + {b_y}^2} }} \cr}\)
Orthogonalitätskriterium
2 Vektoren stehen im rechter Winkel zueinander, wenn ihr Skalarprodukt Null ist
\(\eqalign{ & \overrightarrow a \bot \overrightarrow b \Leftrightarrow \overrightarrow a \circ \overrightarrow b = 0 \cr & {a_x}{b_x} + {a_y}{b_y} = 0 \cr}\)
Achtung in \({{\Bbb R}^3}\):
- Das Skalarprodukt im 3-dimensionalen Raum macht eine Aussage darüber, ob die beiden Geraden im rechten Winkel auf einander stehen.
- Es macht aber keine Aussage darüber, ob die beiden Geraden in einer Ebene liegen und einander daher schneiden, oder ob sie in 2 parallelen Ebenen liegen und daher windschief zu einander sind.
Winkel zwischen 2 Vektoren
Zwischen zwei Vektoren kann man zwei Winkel einzeichnen, einen innen- und einen außenliegenden Winkel. Wenn nichts Gegenteiliges gesagt wird, ist immer der Innenwinkel gemeint. Zur Berechnung des Winkels bestimmt man zunächst
- das Skalarprodukt \(\overrightarrow a \circ \overrightarrow b = {a_x} \cdot {b_x} + {a_y} \cdot {b_y}\) der beiden Vektoren,
- danach jeweils den Betrag \(\left| {\overrightarrow a } \right| = \sqrt {{a_x}^2 + {a_y}^2} \) bzw. \(\left| {\overrightarrow b } \right| = \sqrt {{b_x}^2 + {b_y}^2} \) der beiden Vektoren
- und setzt dann in die Formel ein.
- Indem wir den ArkusKosinus nehmen, erhalten wir als Resultat den Winkel in Grad.
Den Kosinus vom Winkel zwischen zwei Vektoren erhält man, indem man das Skalarprodukt der beiden Vektoren durch das Produkt der Beträge der beiden Vektoren dividiert.
\(\varphi = \arccos \dfrac{{\overrightarrow a \circ \overrightarrow b }}{{\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|}}\) mit \(\left| {\overrightarrow a } \right| \ne 0;\,\,\,\,\,\left| {\overrightarrow b } \right| \ne 0\)
Rechenregeln im Zusammenhang mit dem Skalarprodukt
Kommutativgesetz
\(\overrightarrow a \circ \overrightarrow b = \overrightarrow b \circ \overrightarrow a \)
Distributivgesetz
\(\overrightarrow a \circ \left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow a \circ \overrightarrow b + \overrightarrow a \circ \overrightarrow c \)
gemischtes Assoziativgesetz, wobei k ein Skalar ist
\(k \cdot \left( {\overrightarrow a \circ \overrightarrow b } \right) = \left( {k \cdot \overrightarrow a } \right) \circ \overrightarrow b = \overrightarrow a \circ \left( {k \cdot \overrightarrow b } \right)\)
Quadrat eines Vektors bzw. Skalarprodukt eines Vektors mit sich selbst
Betrachten wir den Spezialfall dass \(\overrightarrow b = \overrightarrow a \) , dann gilt:
Das Skalarprodukt eines Vektors mit sich selbst bzw. das Quadrat eines Vektors ist gleich dem Quadrat des Betrags vom Vektor. Wir können das wie folgt zeigen:
\(\begin{array}{l} \overrightarrow a \circ \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \varphi \\ \overrightarrow b = \overrightarrow a \to \cos \left( 0 \right) = 1\\ \overrightarrow a \circ \overrightarrow a = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow a } \right| \cdot 1\\ \overrightarrow a \circ \overrightarrow a = {\overrightarrow a ^2} = {\left| {\overrightarrow a } \right|^2} \end{array}\)
Kreuzprodukt
Für das Kreuzprodukt sind auch die Bezeichnungen vektorielles Produkt bzw. äußeres Produkt üblich Das vektorielle Produkt zweier Vektoren ist ein (dritter) Vektor, der senkrecht auf der von den beiden Vektoren aufgespannten Ebene steht. (Rechtssystem).
\(\eqalign{ & \overrightarrow c = \overrightarrow a \times \overrightarrow b = \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right)\times\left( {\matrix{ {{b_x}} \cr {{b_y}} \cr {{b_z}} \cr } } \right) = \left( {\matrix{ {{a_y} \cdot {b_z} - {a_z} \cdot {b_y}} \cr {{a_z} \cdot {b_x} - {a_x} \cdot {b_z}} \cr {{a_x} \cdot {b_y} - {a_y} \cdot {b_x}} \cr } } \right) = \left( {\matrix{ {{c_x}} \cr {{c_y}} \cr {{c_z}} \cr } } \right) \cr & \left| {\overrightarrow c } \right| = \left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|.\sin \varphi ; \cr}\)
\(\eqalign{ & {\text{mit }}\varphi = \sphericalangle \left( {\overrightarrow a ,\overrightarrow b } \right) & }\)
\(\eqalign{ & \overrightarrow a \times \overrightarrow b \bot \overrightarrow a \cr & \overrightarrow a \times \overrightarrow b \bot \overrightarrow b \cr} \)
Die Bildungsvorschrift für den doch etwas komplizierten Klammerausdruck lautet wie folgt:
Schreibe die Komponenten der beiden Vektoren an und füge die beiden oberen Zeilen unten noch einmal an
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{}\\ {{a_z}}&{{b_z}}&{}&{}&{}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Fange in der 1. Spalte in der 2. Zeile an und rechne: "(links oben mal rechts unten) minus (links unten mal rechts oben)
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{{a_y} \cdot {b_z}}&{ - {a_z} \cdot {b_y}}\\ {{a_y}}&{{b_y}}&{}&{}&{}\\ {{a_z}}&{{b_z}}& \Rightarrow &{}&{}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Wiederhole das Ganze in der 1. Spalten in der 3. Zeile
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{{a_y} \cdot {b_z}}&{ - {a_z} \cdot {b_y}}\\ {{a_y}}&{{b_y}}&{}&{{a_z} \cdot {b_x}}&{ - {a_x} \cdot {b_z}}\\ {{a_z}}&{{b_z}}& \Rightarrow &{}&{}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Wiederhole das Ganze in der 1. Spalten in der 4. Zeile
\(\begin{array}{*{20}{l}} {{a_x}}&{{b_x}}&{}&{{a_y} \cdot {b_z}}&{ - {a_z} \cdot {b_y}}\\ {{a_y}}&{{b_y}}&{}&{{a_z} \cdot {b_x}}&{ - {a_x} \cdot {b_z}}\\ {{a_z}}&{{b_z}}& \Rightarrow &{{a_x} \cdot {b_y}}&{ - {a_y} \cdot {b_x}}\\ {{a_x}}&{{b_x}}&{}&{}&{}\\ {{a_y}}&{{b_y}}&{}&{}&{} \end{array}\)
Betrag vom Kreuzprodukt entspricht der Fläche vom Parallelogramm
Der Betrag des Vektors entspricht der Maßzahl der Fläche, des durch die beiden Vektoren aufgespannten Parallelogramms.
\({\rm{A = l}} \cdot {\rm{b = }}\left| {\left( {\overrightarrow a \times \overrightarrow b } \right)} \right| = {\rm{Skalar}}\)
Illustration vom Kreuzprodukt
Parallelitätskriterium
Zwei Vektoren sind dann zueinander parallel, wenn der Betrag von dem Vektor, der sich aus dem Kreuzprodukt ergibt, Null ist
\(\begin{array}{l} \overrightarrow a \times \overrightarrow b = \overrightarrow 0 \Leftrightarrow \overrightarrow a \parallel \overrightarrow b \\ \left| {\overrightarrow a \times \overrightarrow b } \right| = 0 \Leftrightarrow \overrightarrow a \parallel \overrightarrow b \end{array}\)
Zwei Vektoren sind dann zu einander parallel, wenn ein Vektor ein Vielfaches vom anderen Vektor ist.
\(\overrightarrow a \left\| {\overrightarrow b } \right.\,\, \Leftrightarrow \,\,\overrightarrow b = \lambda .\overrightarrow a \Leftrightarrow \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr } } \right) = \left( {\matrix{ {\lambda .{a_x}} \cr {\lambda .{a_y}} \cr } } \right)\)
Rechenregeln im Zusammenhang mit dem Kreuzprodukt
Das Kommutativgesetz gilt nicht für das Kreuzprodukt, sondern es besteht folgender Zusammenhang
\(\overrightarrow a \times \overrightarrow b = - \left( {\overrightarrow b \times \overrightarrow a } \right)\)
Das Distributivgesetz gilt für das Kreuzprodukt
\(\eqalign{ & \overrightarrow a \times \left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow a \times \overrightarrow b + \overrightarrow a \times \overrightarrow c \cr & \left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \overrightarrow a \times \overrightarrow c + \overrightarrow b \times \overrightarrow c \cr} \)
Darüber hinaus gelten folgende Zusammenhänge
\(\eqalign{ & \overrightarrow a \times \overrightarrow a = 0 \cr & \left( {\lambda \overrightarrow a } \right) \times \overrightarrow b = \lambda \left( {\overrightarrow a \times \overrightarrow b } \right) \cr} \)
Das Spatprodukt
Beim Spatprodukt, auch gemischtes Produkt genannt, wird zuerst von zwei Vektoren das Kreuzprodukt und vom so resultierenden Vektor zusammen mit einem dritten Vektor das Skalarprodukt berechnet. Es dient dazu das Volumen eines von drei Vektoren aufgespannten Körpers zu berechnen. Solch einen Körper nennt man Parallelepiped oder Spat. Die Bezeichnung Spat ist uns aus der Mineralogie (Feldspat) vertraut. Das Spatprodukt dreier Vektoren liefert als Resultat ein Skalar.
\(V = l \cdot b \cdot h = A \cdot h = \left( {\overrightarrow a \times \overrightarrow b } \right) \circ \overrightarrow c = \overrightarrow d \circ \overrightarrow c = {\rm{Skalar}}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 91
Skalieren eines Vektors
Multipliziere den Vektor \(\overrightarrow a\)mit der reellen Zahl \(\lambda\) und berechne den Vektor \(\overrightarrow c\).
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 1 \cr 3 \cr } } \right);\,\,\,\,\,\lambda = - 3; \cr & \overrightarrow c = \lambda .\overrightarrow a ; \cr}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 92
Skalieren eines Vektors
Addiere die beiden Vektoren
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 2 \cr 1 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 1 \cr 3 \cr } } \right); \cr & \overrightarrow c = 3\overrightarrow a + 2\overrightarrow b ; \cr}\)
Aufgabe 94
Normalprojektion eines Vektors auf einen anderen Vektor
Ermittle die Normalprojektion \(\overrightarrow {{b_a}}\)von \(\overrightarrow b\) auf \(\overrightarrow a\)
\(\overrightarrow a = \left( {\matrix{ 6 \cr 8 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 5 \cr {10} \cr } } \right);\)
Aufgabe 96
Parallele Vektoren
Überprüfe, ob die beiden Vektoren parallel sind:
\(\overrightarrow a \parallel \overrightarrow b ?\)
\(\overrightarrow a = \left( {\matrix{ 3 \cr 4 \cr 5 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ { - 6} \cr { - 8} \cr { - 15} \cr } } \right);\)
Aufgabe 97
Parallele Vektoren
Ermittle die fehlende Koordinate y, sodass die beiden Vektoren parallel sind
\(\overrightarrow a = \left( {\matrix{ 3 \cr 4 \cr 5 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ { - 6} \cr y \cr { - 10} \cr } } \right);\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1211
AHS - 1_211 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geometrische Deutung
Gegeben sind zwei Vektoren: \(\overrightarrow a ,\,\,\overrightarrow b \,\, \in {{\Bbb R}^2}\)
- Aussage 1: Der Vektor \(3 \cdot \overrightarrow a \) ist dreimal so lang wie der Vektor \(\overrightarrow a\).
- Aussage 2: Das Produkt \(\overrightarrow a \cdot \overrightarrow b\) ergibt einen Vektor.
- Aussage 3: Die Vektoren \(\overrightarrow a\) und \( - 0,5 \cdot \overrightarrow a\) besitzen die gleiche Richtung und sind gleich orientiert.
- Aussage 4: Die Vektoren \(\overrightarrow a\) und \( - 2 \cdot \overrightarrow a\) sind parallel.
- Aussage 5: Wenn \(\overrightarrow a\) und \(\overrightarrow b\) einen rechten Winkel einschließen, so ist deren Skalarprodukt größer als null.
Aufgabenstellung
Welche der obenstehenden Aussagen über Vektoren sind korrekt? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1058
AHS - 1_058 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Streckenmittelpunkt
Man kann mithilfe der Geradengleichung \(X = A + t \cdot \overrightarrow {AB} {\text{ mit }}t \in \mathbb{R}\) den Mittelpunkt M der Strecke AB bestimmen.
Aufgabenstellung:
Geben Sie an, welchen Wert der Parameter t bei dieser Rechnung annehmen muss!
Aufgabe 1118
AHS - 1_118 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
Gegeben sind die Vektoren \(\overrightarrow a\)und \(\overrightarrow b\), die in der untenstehenden Abbildung als Pfeile dargestellt sind.
- Aufgabenstellung:
Stellen Sie \(\dfrac{1}{2} \cdot \overrightarrow b - \overrightarrow a\) ausgehend vom Punkt C durch einen Pfeil dar!
Aufgabe 1074
AHS - 1_074 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren in einem Quader
Die Grundfläche ABCD des dargestellten Quaders liegt in der xy-Ebene. Festgelegt werden die Vektoren \(\overrightarrow a = \overrightarrow {AB} ;\,\,\,\,\,\overrightarrow b = \overrightarrow {AD} ;{\text{ und }}\overrightarrow c = \overrightarrow {AE}\)
- Aussage 1: \(\overrightarrow {TC} = t \cdot \overrightarrow c\)
- Aussage 2: \(\overrightarrow {AR} = t \cdot \overrightarrow a\)
- Aussage 3: \(\overrightarrow {EG} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
- Aussage 4: \(\overrightarrow {BT} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
- Aussage 5: \(\overrightarrow {TR} = s \cdot \overrightarrow b + t \cdot \overrightarrow c\)
Aufgabenstellung:
Welche der folgenden Darstellungen ist/ sind möglich, wenn \(s,\,\,t \in \mathbb{R}\) gilt? Kreuzen Sie die zutreffende(n) Aussage(n)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1130
AHS - 1_130 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechenoperationen bei Vektoren
Gegeben sind die Vektoren \(\overrightarrow a {\text{ und }}\overrightarrow b\) sowie ein Skalar \(r \in \mathbb{R}\) .
- Aussage 1: \(\overrightarrow a + r \cdot \overrightarrow b\)
- Aussage 2: \(\overrightarrow a + r\)
- Aussage 3: \(\overrightarrow a \cdot \overrightarrow b\)
- Aussage 4: \(r \cdot \overrightarrow b\)
- Aussage 5: \(\overrightarrow b - \overrightarrow a\)
Aufgabenstellung:
Welche der obigen Rechenoperationen liefert/liefern als Ergebnis wieder einen Vektor? Kreuzen Sie die zutreffende(n) Antwort(en) an!
Aufgabe 1538
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trapez
Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: A= (2|–6); B= (10|–2); C= (9|2); D= (3|y). Die Seiten a= AB und c= CD sind zueinander parallel.
Aufgabenstellung:
Geben Sie den Wert der Koordinate y des Punkts D an!
Aufgabe 1712
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Darstellung im Koordinatensystem
Im nachstehenden Koordinatensystem sind der Vektor \(\overrightarrow v \) sowie die Punkte A und B dargestellt. Die Komponenten des dargestellten Vektors \(\overrightarrow v \)und die Koordinaten der beiden Punkte A und B sind ganzzahlig.
Aufgabenstellung:
Bestimmen Sie den Wert des Parameters t so, dass die Gleichung \(B = A + t \cdot \overrightarrow v \)erfüllt ist.
- t = ___
[0 / 1 Punkt]