Halbierungspunkt eines Vektors
Hier findest du folgende Inhalte
Formeln
Geometrische Operationen mittels Vektorrechnung
Append Regel
Die Append Regel kommt dann zur Anwendung, wenn von einem Anfangspunkt ausgehend ein Vektor hinzugefügt (to append) werden soll und die Koordinaten vom Endpunkt des Vektors gesucht sind. Man spricht dabei von der Punkt-Vektor Form. Die Komponenten vom Ortsvektor des Endpunktes erhält man, indem man je Achsenrichtung die Komponenten des Anfangspunkts und jene des Vektors addiert.
\(Q = P + \overrightarrow v = P + \overrightarrow {PQ} = \left( {\begin{array}{*{20}{c}} {{P_x}}\\ {{P_y}} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{Q_x}}\\ {{Q_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{P_x} + {v_x}}\\ {{P_y} + {v_y}} \end{array}} \right)\)
Ein Punkt P plus ein Vektor v ergibt einen neuen Punkt Q
Normalvektor bzw. Orthogonalvektor & Rechts-Kipp-Regel bzw. Links Kipp Regel
In einem zweidimensionalen kartesischen Koordinatensystem kann es zweckmäßig sein, einen Vektor nach rechts bzw. nach links zu kippen, d.h. um \( \pm 90^\circ \) zu drehen. Der so gekippte Vektor steht dann senkrecht auf dem ursprünglichen Vektor, d.h. er wird zum Normalvektor, auch Orthogonalvektor genannt. Ein Beispiel dafür sind Höhenlinien oder Streckensymmetralen bei Dreiecken.
- Bei der Linkskippregel werden die Komponenten vertauscht und bei der oberen Komponente wird auch das Vorzeichen vertauscht.
- Bei der Rechtskippregel werden die Komponenten vertauscht und bei der unteren Komponente wird auch das Vorzeichen vertauscht.
\(\begin{array}{l} \overrightarrow a = \left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}} \end{array}} \right)\\ {\overrightarrow n _{_{{\rm{links}}}}} = \left( {\begin{array}{*{20}{c}} { - {a_y}}\\ {{a_x}} \end{array}} \right){\rm{ bzw}}{\rm{. }}{\overrightarrow n _{_{rechts}}} = \left( {\begin{array}{*{20}{c}} {{a_y}}\\ { - {a_x}} \end{array}} \right) \end{array}\)
Projektionssatz
Der Projektionssatz ist eine geometrische Interpretation vom Skalarprodukt. Dabei wird ein Vektor \(\overrightarrow b\) in zwei Komponenten zerlegt. Die eine Komponente hat den selben Richtungsvektor wie der Vektor \(\overrightarrow a\), die andere Komponente liegt senkrecht dazu. Das skalare Produkt ist definiert als das Produkt der Länge der Projektion von \(\overrightarrow b\)auf \(\overrightarrow a\), also \(\left| {\overrightarrow b } \right|.\cos \varphi\) und der Länge von \(\overrightarrow a\) also \(\left| {\overrightarrow a } \right|\)
Normalprojektion eines Vektors auf einen anderen Vektor, Vektorprojektionsformel
In der Mechanik ist es oft zweckmäßig Kräfte in Komponenten zu zerlegen, wobei diese Komponenten nicht zwangsläufig parallel zu den Achsen des Koordinatensystems sein müssen. Dazu bedient man sich der Vektorprojektionsformel, wobei \(\left| {\overrightarrow {{b_a}} } \right|\) die Projektion \(\overrightarrow b \)von auf \(\overrightarrow a \) heißt.
- Die Projektion von \(\overrightarrow b\) auf \(\overrightarrow a\), ist der Betrag \(\left| {\overrightarrow {{b_a}} } \right|\), also eine reelle Zahl, die sich wie folgt ergibt:
\(\begin{array}{l} \left| {\overrightarrow {{b_a}} } \right| = \dfrac{{\overrightarrow a \circ \overrightarrow b }}{{\left| {\overrightarrow a } \right|}} = \left| {\dfrac{{{a_x} \cdot {b_x} + {a_y} \cdot {b_y}}}{{\sqrt {{{\left( {{a_x}} \right)}^2} + {{\left( {{a_y}} \right)}^2}} }}} \right|\\ {\rm{wobei }}0^\circ \le \varphi \le 90^\circ \end{array}\)
- Die Längskomponente von Vektor b in Richtung vom Vektor a, das ist der Vektor \(\overrightarrow {{b_a}}\), ergibt sich zu
\(\overrightarrow {{b_a}} = \dfrac{{\overrightarrow a \circ \overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}} \cdot \overrightarrow a \)
Im Zähler vom Bruch steht das Skalarprodukt, also eine reelle Zahl, im Nenner vom Bruch steht das Quadrat vom Betrag, also ebenfalls eine reelle Zahl, womit der Bruch selbst ein Skalierungsfaktor für den Vektor \(\overrightarrow a\) ist. Das macht Sinn, denn es ist ja genau jener Anteil von \(\overrightarrow b\) gesucht, der in Richtung von \(\overrightarrow a\) wirkt.
Mittelpunkt einer Strecke bzw. Halbierungspunkt zwischen 2 Punkten
Den Mittelpunkt der Strecke von A nach B erhält man, indem man jeweils separat die x, y und z-Komponenten der beiden Punkte A, B addiert und anschließend durch 2 dividiert.
\(\begin{array}{l} A\left( {{A_x}\left| {{A_y}\left| {{A_z}} \right.} \right|} \right),\,\,\,\,\,B\left( {{B_x}\left| {{B_y}\left| {{B_z}} \right.} \right.} \right)\\ {H_{\overrightarrow {AB} }} = {M_{\overrightarrow {AB} }} = A + \dfrac{1}{2}\overrightarrow {AB} = \dfrac{1}{2} \cdot \left( {\begin{array}{*{20}{c}} {{A_x} + {B_x}}\\ {{A_y} + {B_y}}\\ {{A_z} + {B_z}} \end{array}} \right)\\ {H_{AB}}\left( {\dfrac{{{A_x} + {B_x}}}{2}\left| {\dfrac{{{A_y} + {B_y}}}{2}\left| {\dfrac{{{A_z} + {B_z}}}{2}} \right.} \right.} \right) \end{array}\)
Teilungspunkt einer Strecke
Der Teilungspunkt T ist jener Punkt, der die Strecke von A nach B im Verhältnis λ teilt.
\(T = A + \lambda \cdot \overrightarrow {AB} = \left( {1 - \lambda } \right)A + \lambda B\)
Schwerunkt eines Dreiecks
Um die Koordinaten vom Schwerpunkt eines Dreiecks zu berechnen, dessen 3 Eckpunkte gegeben sind, addiert man jeweils für jeden der 3 Eckpunkte gesondert die x, y und z-Komponenten und dividiert anschließend die jeweilige Summe durch 3.
Gegeben sind drei Punkte im Raum
\(A\left( {{A_x}\left| {{A_y}\left| {{A_z}} \right.} \right|} \right),\,\,\,\,\,B\left( {{B_x}\left| {{B_y}\left| {{B_z}} \right.} \right.} \right),\,\,\,\,\,C\left( {{C_x}\left| {{C_y}\left| {{C_z}} \right.} \right.} \right)\)
für deren Schwerpunkt gilt
\(\overrightarrow {OS} = \dfrac{1}{3} \cdot \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\)
\(S = \dfrac{1}{3}\left( {A + B + C} \right) = \dfrac{1}{3} \cdot \left( {\begin{array}{*{20}{c}} {{A_x} + {B_x} + {C_x}}\\ {{A_y} + {B_y} + {C_y}}\\ {{A_z} + {B_z} + {C_z}} \end{array}} \right)\)
\({S_{ABC}} = \left( {\dfrac{{{A_x} + {B_x} + {C_x}}}{3}\left| {\dfrac{{{A_y} + {B_y} + {C_y}}}{3}\left| {\dfrac{{{A_z} + {B_z} + {C_z}}}{3}} \right.} \right.} \right) \)
Flächeninhalt des von 2 Vektoren aufgespannten Parallelogramms
Das vektorielle Produkt zweier Vektoren ist ein dritter Vektor, der senkrecht auf der von den beiden Vektoren aufgespannten Ebene steht und dessen Betrag der Fläche des durch die beiden Vektoren aufgespannten Parallelogramms entspricht.
\(\begin{array}{l} A = \left| {\overrightarrow a \times \overrightarrow b } \right|\\ A = \left| {\left( {\begin{array}{*{20}{c}} {{a_x}}&{{b_x}}\\ {{a_y}}&{{b_y}} \end{array}} \right)} \right| = \left| {{a_x} \cdot {b_y} - {b_x} \cdot {a_y}} \right| \end{array}\)
Flächeninhalt des von 2 Vektoren aufgespannten Dreiecks
Die Fläche des von 2 Vektoren aufgespannten Dreiecks entspricht dem halben Betrag vom Kreuzprodukt der beiden Vektoren. Das Kreuzprodukt zweier Vektoren ist ein dritter Vektor, der senkrecht auf die von den beiden Vektoren aufgespannte Ebene steht und dessen Betrag der Fläche des durch die beiden Vektoren aufgespannten Parallelogramms entspricht. Die Fläche des aufgespannten Dreiecks ist genau die Hälfte der Fläche vom aufgespannten Parallelogramm.
\(\begin{array}{l} {A_\Delta } = \dfrac{1}{2} \cdot \left| {\overrightarrow a \times \overrightarrow b } \right|\\ {A_\Delta } = \dfrac{1}{2}\left| {\left( {\begin{array}{*{20}{c}} {{a_x}}&{{b_x}}\\ {{a_y}}&{{b_y}} \end{array}} \right)} \right| = \dfrac{1}{2}\left| {{a_x} \cdot {b_y} - {b_x} \cdot {a_y}} \right| \end{array}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgaben
Aufgabe 98
Halbierungspunkt eines Vektors
Ermittle den Mittelpunkt \({M_{\overrightarrow {AB} }}\) der Strecke \(\overrightarrow {AB}\), wenn
\(\overrightarrow A = \left( {\matrix{ 3 \cr 4 \cr } } \right);\,\,\,\,\,\overrightarrow B = \left( {\matrix{ { - 7} \cr 6 \cr } } \right);\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 101
Halbierungspunkt
Gegeben ist ein Parallelogramm mit 2 Eckpunkten A, D sowie dem Schnittpunkt M der beiden Diagonalen:
\(A\left( {\matrix{ { - 2} \cr { - 3} \cr } } \right);\,\,\,\,\,D\left( {\matrix{ { - 2} \cr 4 \cr } } \right);\,\,\,\,\,M\left( {\matrix{ 1 \cr 2 \cr } } \right)\)
Berechne die Koordinaten der fehlenden beiden Eckpunkte B und C.
Aufgabe 1058
AHS - 1_058 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Streckenmittelpunkt
Man kann mithilfe der Geradengleichung \(X = A + t \cdot \overrightarrow {AB} {\text{ mit }}t \in \mathbb{R}\) den Mittelpunkt M der Strecke AB bestimmen.
Aufgabenstellung:
Geben Sie an, welchen Wert der Parameter t bei dieser Rechnung annehmen muss!