Gerade im dreidimensionalem Raum - 1137. Aufgabe 1_137
Aufgabe 1137: Aufgabenpool: AG 3.4 - Aufgabenpool für die SRP in Mathematik (12.2015)
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 1137
AHS - 1_137 & Lehrstoff: AG 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gerade im dreidimensionalem Raum
Gegeben ist die Gerade g mit der Gleichung \(X = \left( {\begin{array}{*{20}{c}} 4 \\ 2 \\ 4 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \\ 2 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 1: \(X = \left( {\begin{array}{*{20}{c}} 4 \\ 2 \\ 4 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 3 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 2: \(X = \left( {\begin{array}{*{20}{c}} 5 \\ 7 \\ 9 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 4 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 3: \(X = \left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 8 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1 \\ { - 1} \\ 2 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 4: \(X = \left( {\begin{array}{*{20}{c}} 4 \\ 2 \\ 4 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ { - 2} \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
- Aussage 5: \(X = \left( {\begin{array}{*{20}{c}} 3 \\ 3 \\ 2 \end{array}} \right) + t \cdot \left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right){\text{ mit }}t \in \mathbb{R}\)
Aufgabenstellung:
Zwei der obigen Gleichungen sind ebenfalls Parameterdarstellungen der Geraden g. Kreuzen Sie diese beiden Gleichungen an!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!