BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_W_3.5
Geeignete Modelle für die Beschreibung von Änderungsprozessen (linear, exponentiell, beschränkt, logistisch) aufstellen, mit den zugehörigen Funktionen Berechnungen durchführen und sie grafisch darstellen, Ansätze, Lösungswege und Ergebnisse interpretieren; im Kontext argumentieren
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4037
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkende Kugeln - Aufgabe B_407
Teil a
Die Sinkgeschwindigkeit einer in einer Flüssigkeit sinkenden Metallkugel kann durch eine Funktion v beschrieben werden: \(v\left( t \right) = g \cdot \tau \cdot \left( {1 - {e^{ (- \dfrac{t}{\tau })}}} \right){\text{ mit }}t \geqslant 0\)
wobei:
t | Zeit ab Beginn des Sinkens in Sekunden (s) |
v(t) | Sinkgeschwindigkeit zur Zeit t in Metern pro Sekunde (m/s) |
τ | Zeitkonstante in s mit τ > 0 |
g | Erdbeschleunigung (g ≈ 9,81 m/s2) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie mathematisch, warum die Sinkgeschwindigkeit ständig zunimmt.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4458
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Öffentlicher Verkehr in Wien - Aufgabe B_515
Teil b
Die Anzahl der pro Jahr verkauften Jahreskarten für öffentliche Verkehrsmittel in Wien lässt sich für den Zeitraum von 2011 bis 2016 näherungsweise durch die Funktion N beschreiben.
\(N\left( t \right) = 815000 - 450000 \cdot {a^t}\)
t |
Zeit in Jahren mit t = 0 für das Jahr 2011 |
N(t) |
Anzahl der pro Jahr verkauften Jahreskarten zur Zeit t |
a |
Parameter mit 0 < a < 1 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie, warum der Ordinatenabschnitt (Achsenabschnitt auf der vertikalen Achse) des Graphen der Funktion N nicht vom Parameter a abhängt.
[0 / 1 P.]
Im Jahr 2015 wurden 700 000 Jahreskarten verkauft.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter a.
[0 / 1 P.]
Es wird davon ausgegangen, dass die Funktion N auch die zukünftige Entwicklung der Anzahl der pro Jahr verkauften Jahreskarten richtig beschreibt.
3. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Zahl 815 000 in der obigen Gleichung der Funktion N im gegebenen Sachzusammenhang.
[0 / 1 P.]
Aufgabe 4595
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchengerät – Aufgabe B_557
Ein neues Küchengerät wird auf den Markt gebracht.
Teil a
Die zeitliche Entwicklung der Verkaufszahlen dieses Küchengeräts soll durch die beschränkte Wachstumsfunktion N1 beschrieben werden.
\({N_1}\left( t \right) = S \cdot \left( {1 - {e^{ - \lambda \cdot t}}} \right)\)
- t ... Zeit ab Verkaufsbeginn in Wochen
- N1(t) ... insgesamt verkaufte Menge bis zur Zeit t in Stück
- S ... Sättigungsmenge in Stück
- λ ... positiver Parameter
1. Teilaufgabe - Bearbeitungszeit 05:40
Argumentieren Sie mathematisch anhand der Funktionsgleichung, dass gilt: N1(0) = 0
[0 / 1 P.]
Die Sättigungsmenge beträgt 5 000 Stück. Eine Woche nach Verkaufsbeginn wurden bereits 350 Stuck verkauft.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie λ.
[0 / 1 P.]
Vereinfacht kann die zeitliche Entwicklung der Verkaufszahlen dieses Küchengeräts für einen eingeschränkten Zeitraum auch durch die Funktion N2 beschrieben werden.
\({N_2}\left( t \right) = 350 \cdot t\)
- t ... Zeit ab Verkaufsbeginn in Wochen
- N2(t) ... insgesamt verkaufte Menge bis zur Zeit t in Stück
Jemand hat die Gleichungen N1(t) = N2(t) und N1‘(t) = N2‘(t) nach t gelöst.
3. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Gleichungen jeweils die zutreffende Aussage aus A bis D zu.
[0 / 1 P.]
- Gleichung 1: \({N_1}\left( t \right) = {N_2}\left( t \right)\)
- Gleichung 2: \({N_1}^\prime \left( t \right) = {N_2}^\prime \left( t \right)\)
- Aussage A: Die Lösungsmenge dieser Gleichung ist {0; 1}.
- Aussage B: Die Lösung dieser Gleichung liegt im Intervall ]0; 1[.
- Aussage C: Die Lösung dieser Gleichung liegt im Intervall [1; ∞[.
- Aussage D: Die Lösungsmenge dieser Gleichung ist {0}.
Aufgabe 5634
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Thermometer – Aufgabe B_540
Ein digitales Thermometer wird zur Messung der Temperatur des Wassers in einem Becken verwendet. Ausgehend von einem Startwert nähert sich die angezeigte Temperatur der tatsächlichen Temperatur des Wassers an.
Teil b
Zu Beginn einer anderen Messung zeigt das digitale Thermometer eine Temperatur von 33,0 °C an. Nach 4 s zeigt es eine Temperatur von 36,0 °C an. Der zeitliche Verlauf der angezeigten Temperatur bei dieser Messung kann durch die Funktion g beschrieben werden.
\(g\left( t \right) = c - a \cdot {e^{ - 0,275 \cdot t}}\)
- t … Zeit nach Beginn der Messung in s
- g(t) … angezeigte Temperatur zur Zeit t in °C
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein Gleichungssystem zur Berechnung der Parameter a und c.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Parameter a und c.
[0 / 1 P.]
Aufgabe 5694
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Niedrigzinsphase – Aufgabe B_568
Infolge der Finanzmarktkrise 2008 entstand eine über Jahre andauernde Phase niedriger Zinsen.
Teil d
Die Europäische Zentralbank legt einen sogenannten Leitzinssatz fest. Seit der Finanzmarktkrise 2008 ist der Leitzinssatz gesunken (siehe nachstehende Tabelle):
Zeit ab 1.1.2008 in Jahren | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Leitzinssatz in % | 4,00 | 2,50 | 1,00 | 1,00 | 1,00 | 0,75 | 0,25 | 0,05 |
Datenquelle: https://www.finanzen.net/leitzins/@historisch [21.10.2020].
Die zeitliche Entwicklung des Leitzinssatzes soll mithilfe von exponentieller Regression durch die Funktion L modelliert werden.
\(L\left( t \right) = a \cdot {b^t}\)
- t ... Zeit ab 1.1.2008 in Jahren
- L(t) ... Leitzinssatz zur Zeit t in Prozent
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der Funktion L auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie den Zeitraum, in dem sich der Leitzinssatz gemäß der Funktion L jeweils halbiert.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.