Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Prüfungsvorbereitung Matura, Abitur und STEOP
  3. Matura Österreich AHS - Mathematik
  4. Typ 1 - Algebra und Geometrie
  5. AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3

AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3

    Formel

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3

    Vektoren

    AG 3.3: Definition der Rechenoperationen mit Vektoren (Addition, Multiplikation mit einem Skalar, Skalarmultiplikation) kennen, Rechenoperationen verständig einsetzen und (auch geometrisch) deuten können

    Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Wissenspfad

    Zur aktuellen Lerneinheit empfohlenes Vorwissen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG

    Algebra und Geometrie sind einer der 5 Inhaltebereiche der standardisierten kompetenzorientierten Reifeprüfung in Mathematik an Österreichs AHS

    Aktuelle Lerneinheit

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3

    Rechenoperationen mit Vektoren

    Verbreitere dein Wissen zur aktuellen Lerneinheit

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 4.2

    Sinus, Cosinus und Tangens für Winkel größer als 90° kennen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 4.1

    Sinus, Cosinus und Tangens im rechtwinkeligen Dreieick kennen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.5

    Normalvektoren aufstellen und einsetzen können

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.4

    Geraden durch Gleichungen angeben können

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.2

    Vektoren geometrisch deuten

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.1

    Variablen als Zahlentupel einsetzen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.5

    Lineare Gleichungen in 2 Variablen aufstellen und lösen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.4

    Lineare (Un)gleichungen aufstellen und lösen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.3

    Quadratische Gleichungen umformen und lösen. 

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.2

    Lineare Gleichungen aufstellen und lösen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.1

    Terme und Formeln aufstellen und Umformen

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 1.2

    Wissen über algebraische Begriffe

    AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 1.1

    Wissen über Zahlenmengen

    Aufgaben zu diesem Thema
    LösungswegBeat the Clock

    Aufgabe 1074

    AHS - 1_074 & Lehrstoff: AG 3.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Vektoren in einem Quader

    Die Grundfläche ABCD des dargestellten Quaders liegt in der xy-Ebene. Festgelegt werden die Vektoren \(\overrightarrow a = \overrightarrow {AB} ;\,\,\,\,\,\overrightarrow b = \overrightarrow {AD} ;{\text{ und }}\overrightarrow c = \overrightarrow {AE}\)

    Strecke f Strecke f: Strecke [A, E] Strecke g Strecke g: Strecke [E, F] Strecke i Strecke i: Strecke [E, H] Strecke j Strecke j: Strecke [H, I] Strecke k Strecke k: Strecke [I, F] Strecke l Strecke l: Strecke [F, J] Strecke m Strecke m: Strecke [E, K] Strecke n Strecke n: Strecke [K, L] Strecke p Strecke p: Strecke [L, H] Strecke q Strecke q: Strecke [K, J] Strecke r Strecke r: Strecke [J, M] Strecke s Strecke s: Strecke [M, I] Strecke t Strecke t: Strecke [L, M] Strecke a Strecke a: Strecke [A, N] Strecke b Strecke b: Strecke [N, E] Vektor u Vektor u: Vektor[A, B] Vektor u Vektor u: Vektor[A, B] Vektor w Vektor w: Vektor[A, D] Vektor w Vektor w: Vektor[A, D] Vektor h Vektor h: Vektor[F, G] Vektor h Vektor h: Vektor[F, G] Punkt E E = (16.4, 8.3) Punkt E E = (16.4, 8.3) Punkt F F = (23.6, 8.3) Punkt F F = (23.6, 8.3) Punkt H H = (12.5, 3.7) Punkt H H = (12.5, 3.7) Punkt I I = (20.3, 3.7) Punkt I I = (20.3, 3.7) Punkt J J = (23.6, 17.29) Punkt J J = (23.6, 17.29) Punkt K K = (16.4, 17.29) Punkt K K = (16.4, 17.29) Punkt L L = (12.5, 13.28) Punkt L L = (12.5, 13.28) Punkt M M = (20.3, 13.28) Punkt M M = (20.3, 13.28) Punkt R Punkt R: Punkt auf k Punkt R Punkt R: Punkt auf k Punkt T Punkt T: Punkt auf l Punkt T Punkt T: Punkt auf l x Text1 = "x" z Text2 = "z" y Text3 = "y" A Text4 = "A" B Text5 = "B" F Text6 = "F" E Text7 = "E" C Text8 = "C" D Text9 = "D" G Text10 = "G" H Text11 = "H" R Text12 = "R" T Text13 = "T"

    • Aussage 1: \(\overrightarrow {TC} = t \cdot \overrightarrow c\)
    • Aussage 2: \(\overrightarrow {AR} = t \cdot \overrightarrow a\)
    • Aussage 3: \(\overrightarrow {EG} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
    • Aussage 4: \(\overrightarrow {BT} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
    • Aussage 5: \(\overrightarrow {TR} = s \cdot \overrightarrow b + t \cdot \overrightarrow c\)

    Aufgabenstellung:
    Welche der folgenden Darstellungen ist/ sind möglich, wenn \(s,\,\,t \in \mathbb{R}\) gilt? Kreuzen Sie die zutreffende(n) Aussage(n)

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Quader
    Addition zweier Vektoren
    Multiplikation eines Vektors mit einem Skalar
    Vektoren in einem Quader - 1074. Aufgabe 1_074
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1515

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 3. Aufgabe
    Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 4. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Vektoren

    In der Ebene werden auf einer Geraden in gleichen Abständen nacheinander die Punkte A, B, C und D markiert. Es gilt also: \(\overrightarrow {AB} = \overrightarrow {BC} = \overrightarrow {CD} \)

    Die Koordinaten der Punkte A und C sind bekannt. \(A = \left( {\left. 3 \right|1} \right);\,\,\,\,\,C = \left( {7\left| 8 \right.} \right)\)


    Aufgabenstellung:
    Berechnen Sie die Koordinaten von D!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Addition zweier Vektoren
    Vektoren - 1515. Aufgabe 1_515
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1346

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 4. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Vektorkonstruktion

    Die Abbildung zeigt zwei als Pfeile dargestellte Vektoren
    Vektor u Vektor u: Vektor(A, B) Vektor u Vektor u: Vektor(A, B) Vektor a Vektor a: Vektor(D, E) Vektor a Vektor a: Vektor(D, E) Punkt F F = (4, 5) Punkt F F = (4, 5) \overrightarrow a text1 = “\overrightarrow a” \overrightarrow a text1 = “\overrightarrow a” \overrightarrow b text2 = “\overrightarrow b” \overrightarrow b text2 = “\overrightarrow b” P Text1 = “P”


    Aufgabenstellung:
    Ergänzen Sie die unten stehende Abbildung um einen Pfeil, der vom Punkt P ausgeht und den Vektor \(\overrightarrow a - \overrightarrow b \) darstellt!

    Subtraktion zweier Vektoren
    Vektorkonstruktion - 1346. Aufgabe 1_346
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1466

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 4. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Normalvektoren

    Gegeben ist der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right)\)


    Aufgabenstellung:
    Bestimmen Sie die Koordinate zb des Vektors \(\overrightarrow b = \left( {\begin{array}{*{20}{c}} 4\\ 2\\ {{z_b}} \end{array}} \right)\) so, dass \(\overrightarrow a\) und \(\overrightarrow b\) aufeinander normal stehen!

    Normalvektor
    Normalvektoren - 1466. Aufgabe 1_466
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    Bild
    Illustration Buch mit Cocktail 1050 x 450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 1211

    AHS - 1_211 & Lehrstoff: AG 3.1
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Geometrische Deutung
    Gegeben sind zwei Vektoren: \(\overrightarrow a ,\,\,\overrightarrow b \,\, \in {{\Bbb R}^2}\)

    • Aussage 1: Der Vektor \(3 \cdot \overrightarrow a \) ist dreimal so lang wie der Vektor \(\overrightarrow a\).
    • Aussage 2: Das Produkt \(\overrightarrow a \cdot \overrightarrow b\) ergibt einen Vektor.
    • Aussage 3: Die Vektoren \(\overrightarrow a\) und \( - 0,5 \cdot \overrightarrow a\) besitzen die gleiche Richtung und sind gleich orientiert.
    • Aussage 4: Die Vektoren \(\overrightarrow a\) und \( - 2 \cdot \overrightarrow a\) sind parallel.
    • Aussage 5: Wenn \(\overrightarrow a\) und \(\overrightarrow b\) einen rechten Winkel einschließen, so ist deren Skalarprodukt größer als null.

    Aufgabenstellung
    Welche der obenstehenden Aussagen über Vektoren sind korrekt? Kreuzen Sie die beiden zutreffenden Aussagen an!

    Multiplikation eines Vektors mit einem Skalar
    Parallele Vektoren
    Rechter Winkel zwischen 2 Vektoren
    Geometrische Deutung - 1211. Aufgabe 1_211
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Skalares Produkt zweier Vektoren
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1593

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 4. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Orthogonale Vektoren

    Gegeben sind die nachstehend angeführten Vektoren:

    \(\begin{array}{l} \overrightarrow a = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)\\ \overrightarrow b = \left( {\begin{array}{*{20}{c}} x\\ 0 \end{array}} \right)\\ \overrightarrow c = \left( {\begin{array}{*{20}{c}} 1\\ { - 2} \end{array}} \right)\\ \overrightarrow d = \overrightarrow a - \overrightarrow b \end{array}\)


    Aufgabenstellung:
    Berechnen Sie \(x \in {\Bbb R}\) so, dass die Vektoren \(\overrightarrow c\) und \(\overrightarrow d\) aufeinander normal stehen!

    Orthogonale Vektoren - 1593. Aufgabe 1_593
    Orthogonalitätskriterium
    Subtraktion zweier Vektoren
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1130

    AHS - 1_130 & Lehrstoff: AG 3.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Rechenoperationen bei Vektoren
    Gegeben sind die Vektoren \(\overrightarrow a {\text{ und }}\overrightarrow b\) sowie ein Skalar \(r \in \mathbb{R}\) .

    • Aussage 1: \(\overrightarrow a + r \cdot \overrightarrow b\)
    • Aussage 2: \(\overrightarrow a + r\)
    • Aussage 3: \(\overrightarrow a \cdot \overrightarrow b\)
    • Aussage 4: \(r \cdot \overrightarrow b\)
    • Aussage 5: \(\overrightarrow b - \overrightarrow a\)

    Aufgabenstellung:
    Welche der obigen Rechenoperationen liefert/liefern als Ergebnis wieder einen Vektor? Kreuzen Sie die zutreffende(n) Antwort(en) an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Addition zweier Vektoren
    Multiplikation eines Vektors mit einem Skalar
    Subtraktion zweier Vektoren
    Rechenoperationen bei Vektoren - 1130. Aufgabe 1_130
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1115

    AHS - 1_115 & Lehrstoff: AG 3.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Quadrat
    A, B, C und D sind Eckpunkte des unten abgebildeten Quadrates, M ist der Schnittpunkt der Diagonalen.

    Vieleck poly1 Vieleck poly1: Vieleck[A, B, 4] Vieleck poly1 Vieleck poly1: Vieleck[A, B, 4] Strecke f Strecke f: Strecke [A, B] von Vieleck poly1 Strecke g Strecke g: Strecke [B, C] von Vieleck poly1 Strecke h Strecke h: Strecke [C, D] von Vieleck poly1 Strecke i Strecke i: Strecke [D, A] von Vieleck poly1 Strecke j Strecke j: Strecke [E, F] Strecke k Strecke k: Strecke [G, H] A text1 = "A" B text2 = "B" C text3 = "C" D text4 = "D" M text5 = "M"

    • Aussage 1: \(C = A + 2 \cdot \overrightarrow {AM}\)
    • Aussage 2: \(B = C + \overrightarrow {AD}\)
    • Aussage 3: \(M = D - \frac{1}{2} \cdot \overrightarrow {DB}\)
    • Aussage 4: \(\overrightarrow {AM} \cdot \overrightarrow {MB} = 0\)
    • Aussage 5: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)

    Aufgabenstellung:
    Kreuzen Sie die beiden zutreffenden Aussagen an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Quadrat
    Quadrat - 1115. Aufgabe 1_115
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Lösungsweg

    Aufgabe 1443

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 3. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Vektoren

    In der unten stehenden Abbildung sind die Vektoren \(\overrightarrow a ,\,\,\overrightarrow b {\rm{ und }}\overrightarrow c \) als Pfeile dargestellt.

    Vektor u Vektor u: Vektor[A, B] Vektor u Vektor u: Vektor[A, B] Vektor v Vektor v: Vektor[A, C] Vektor v Vektor v: Vektor[A, C] Vektor w Vektor w: Vektor[A, D] Vektor w Vektor w: Vektor[A, D] \overrightarrow a text1 = "\overrightarrow a" \overrightarrow a text1 = "\overrightarrow a" \overrightarrow b text3 = "\overrightarrow b" \overrightarrow b text3 = "\overrightarrow b" \overrightarrow c text5 = "\overrightarrow c" \overrightarrow c text5 = "\overrightarrow c"


    Aufgabenstellung:
    Stellen Sie den Vektor \(\overrightarrow d = \overrightarrow a + \overrightarrow b - 2 \cdot \overrightarrow c \) als Pfeil dar!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Subtraktion zweier Vektoren
    Addition zweier Vektoren
    Vektoren - 1443. Aufgabe 1_443
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1133

    AHS - 1_133 & Lehrstoff: AG 3.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Rechteck
    Abgebildet ist das Rechteck RSTU

    Viereck poly1 Viereck poly1: Polygon A, B, C, D Strecke a Strecke a: Strecke [A, B] von Viereck poly1 Strecke b Strecke b: Strecke [B, C] von Viereck poly1 Strecke c Strecke c: Strecke [C, D] von Viereck poly1 Strecke d Strecke d: Strecke [D, A] von Viereck poly1 R text1 = "R" U text2 = "U" T text3 = "T" S text4 = "S"

    • Aussage 1: \(\overrightarrow {ST} = - \overrightarrow {RU}\)
    • Aussage 2: \(\overrightarrow {SR} \,\,\,\parallel \,\,\,\overrightarrow {UT}\)
    • Aussage 3: \(\overrightarrow {RS} + \overrightarrow {ST} = \overrightarrow {TR}\)
    • Aussage 4: \(U = T + \overrightarrow {SR}\)
    • Aussage 5: \(\overrightarrow {RT} \cdot \overrightarrow {SU} = 0\)

    ​Aufgabenstellung:
    Kreuzen Sie die beiden zutreffenden Aussagen an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Rechteck
    Parallele Vektoren
    Orientierung eines Vektors
    Rechteck - 1133. Aufgabe 1_133
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1538

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 4. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Trapez

    Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: A= (2|–6); B= (10|–2); C= (9|2); D= (3|y). Die Seiten a= AB und c= CD sind zueinander parallel.

    Strecke f Strecke f: Strecke [A, B] Strecke g Strecke g: Strecke [A, D] Strecke h Strecke h: Strecke [D, C] Strecke i Strecke i: Strecke [C, B] Punkt A A = (2, -6) Punkt A A = (2, -6) Punkt B B = (10, -6) Punkt B B = (10, -6) Punkt D D = (4, -2) Punkt D D = (4, -2) Punkt C C = (9, -2) Punkt C C = (9, -2) a text1 = "a" b text2 = "b" c text3 = "c" d text4 = "d" A Text1 = "A" B Text2 = "B" C Text3 = "C" D Text4 = "D"


    Aufgabenstellung:
    Geben Sie den Wert der Koordinate y des Punkts D an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Multiplikation eines Vektors mit einem Skalar
    Trapez - 1538. Aufgabe 1_538
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1393

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 5. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Normalvektoren

    Gegeben ist der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} { - 1}\\ 3\\ 5 \end{array}} \right)\)

    • Aussage 1: \(\overrightarrow {{b_1}} = \left( {\begin{array}{*{20}{c}} 2\\ { - 1}\\ 1 \end{array}} \right)\)
       
    • Aussage 2: \(\overrightarrow {{b_2}} = \left( {\begin{array}{*{20}{c}} 0\\ 0\\ { - 5} \end{array}} \right)\)
       
    • Aussage 3: \(\overrightarrow {{b_3}} = \left( {\begin{array}{*{20}{c}} 0\\ 5\\ { - 3} \end{array}} \right)\)
       
    • Aussage 4: \(\overrightarrow {{b_4}} = \left( {\begin{array}{*{20}{c}} 5\\ 0\\ 1 \end{array}} \right)\)
       
    • Aussage 5: \(\overrightarrow {{b_5}} = \left( {\begin{array}{*{20}{c}} { - 1}\\ 3\\ 0 \end{array}} \right)\)

    Aufgabenstellung:
    Welche(r) der oben stehenden Vektoren \(\overrightarrow {{b_1}} \) ... \(\overrightarrow {{b_5}}\) steht/stehen normal auf den Vektor \(\overrightarrow a\) ? Kreuzen Sie den / die zutreffende(n) Vektor(en) an!

    Normalvektor
    Orthogonalitätskriterium
    Skalares Produkt zweier Vektoren
    Normalvektoren - 1393. Aufgabe 1_393
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.3
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite

    Seitennummerierung

    • 1
    • Vorherige Seite
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH