Headerbar Werbung für Region "nicht-DACH"
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3
Formel
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3
Vektoren
AG 3.3: Definition der Rechenoperationen mit Vektoren (Addition, Multiplikation mit einem Skalar, Skalarmultiplikation) kennen, Rechenoperationen verständig einsetzen und (auch geometrisch) deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Banner Werbung für Region CH
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG | Algebra und Geometrie sind einer der 5 Inhaltebereiche der standardisierten kompetenzorientierten Reifeprüfung in Mathematik an Österreichs AHS |
Aktuelle Lerneinheit
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.3 | Rechenoperationen mit Vektoren |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Aufgaben zu diesem Thema
Aufgabe 1074
AHS - 1_074 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren in einem Quader
Die Grundfläche ABCD des dargestellten Quaders liegt in der xy-Ebene. Festgelegt werden die Vektoren \(\overrightarrow a = \overrightarrow {AB} ;\,\,\,\,\,\overrightarrow b = \overrightarrow {AD} ;{\text{ und }}\overrightarrow c = \overrightarrow {AE}\)
- Aussage 1: \(\overrightarrow {TC} = t \cdot \overrightarrow c\)
- Aussage 2: \(\overrightarrow {AR} = t \cdot \overrightarrow a\)
- Aussage 3: \(\overrightarrow {EG} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
- Aussage 4: \(\overrightarrow {BT} = s \cdot \overrightarrow a + t \cdot \overrightarrow b\)
- Aussage 5: \(\overrightarrow {TR} = s \cdot \overrightarrow b + t \cdot \overrightarrow c\)
Aufgabenstellung:
Welche der folgenden Darstellungen ist/ sind möglich, wenn \(s,\,\,t \in \mathbb{R}\) gilt? Kreuzen Sie die zutreffende(n) Aussage(n)
Aufgabe 1515
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 3. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der Ebene werden auf einer Geraden in gleichen Abständen nacheinander die Punkte A, B, C und D markiert. Es gilt also: \(\overrightarrow {AB} = \overrightarrow {BC} = \overrightarrow {CD} \)
Die Koordinaten der Punkte A und C sind bekannt. \(A = \left( {\left. 3 \right|1} \right);\,\,\,\,\,C = \left( {7\left| 8 \right.} \right)\)
Aufgabenstellung:
Berechnen Sie die Koordinaten von D!
Aufgabe 1346
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektorkonstruktion
Die Abbildung zeigt zwei als Pfeile dargestellte Vektoren
Aufgabenstellung:
Ergänzen Sie die unten stehende Abbildung um einen Pfeil, der vom Punkt P ausgeht und den Vektor \(\overrightarrow a - \overrightarrow b \) darstellt!
Aufgabe 1466
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Normalvektoren
Gegeben ist der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right)\)
Aufgabenstellung:
Bestimmen Sie die Koordinate zb des Vektors \(\overrightarrow b = \left( {\begin{array}{*{20}{c}} 4\\ 2\\ {{z_b}} \end{array}} \right)\) so, dass \(\overrightarrow a\) und \(\overrightarrow b\) aufeinander normal stehen!
Banner Werbung für Region DE
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 1211
AHS - 1_211 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geometrische Deutung
Gegeben sind zwei Vektoren: \(\overrightarrow a ,\,\,\overrightarrow b \,\, \in {{\Bbb R}^2}\)
- Aussage 1: Der Vektor \(3 \cdot \overrightarrow a \) ist dreimal so lang wie der Vektor \(\overrightarrow a\).
- Aussage 2: Das Produkt \(\overrightarrow a \cdot \overrightarrow b\) ergibt einen Vektor.
- Aussage 3: Die Vektoren \(\overrightarrow a\) und \( - 0,5 \cdot \overrightarrow a\) besitzen die gleiche Richtung und sind gleich orientiert.
- Aussage 4: Die Vektoren \(\overrightarrow a\) und \( - 2 \cdot \overrightarrow a\) sind parallel.
- Aussage 5: Wenn \(\overrightarrow a\) und \(\overrightarrow b\) einen rechten Winkel einschließen, so ist deren Skalarprodukt größer als null.
Aufgabenstellung
Welche der obenstehenden Aussagen über Vektoren sind korrekt? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1593
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Orthogonale Vektoren
Gegeben sind die nachstehend angeführten Vektoren:
\(\begin{array}{l} \overrightarrow a = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)\\ \overrightarrow b = \left( {\begin{array}{*{20}{c}} x\\ 0 \end{array}} \right)\\ \overrightarrow c = \left( {\begin{array}{*{20}{c}} 1\\ { - 2} \end{array}} \right)\\ \overrightarrow d = \overrightarrow a - \overrightarrow b \end{array}\)
Aufgabenstellung:
Berechnen Sie \(x \in {\Bbb R}\) so, dass die Vektoren \(\overrightarrow c\) und \(\overrightarrow d\) aufeinander normal stehen!
Aufgabe 1130
AHS - 1_130 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechenoperationen bei Vektoren
Gegeben sind die Vektoren \(\overrightarrow a {\text{ und }}\overrightarrow b\) sowie ein Skalar \(r \in \mathbb{R}\) .
- Aussage 1: \(\overrightarrow a + r \cdot \overrightarrow b\)
- Aussage 2: \(\overrightarrow a + r\)
- Aussage 3: \(\overrightarrow a \cdot \overrightarrow b\)
- Aussage 4: \(r \cdot \overrightarrow b\)
- Aussage 5: \(\overrightarrow b - \overrightarrow a\)
Aufgabenstellung:
Welche der obigen Rechenoperationen liefert/liefern als Ergebnis wieder einen Vektor? Kreuzen Sie die zutreffende(n) Antwort(en) an!
Aufgabe 1115
AHS - 1_115 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadrat
A, B, C und D sind Eckpunkte des unten abgebildeten Quadrates, M ist der Schnittpunkt der Diagonalen.
- Aussage 1: \(C = A + 2 \cdot \overrightarrow {AM}\)
- Aussage 2: \(B = C + \overrightarrow {AD}\)
- Aussage 3: \(M = D - \frac{1}{2} \cdot \overrightarrow {DB}\)
- Aussage 4: \(\overrightarrow {AM} \cdot \overrightarrow {MB} = 0\)
- Aussage 5: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1443
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der unten stehenden Abbildung sind die Vektoren \(\overrightarrow a ,\,\,\overrightarrow b {\rm{ und }}\overrightarrow c \) als Pfeile dargestellt.
Aufgabenstellung:
Stellen Sie den Vektor \(\overrightarrow d = \overrightarrow a + \overrightarrow b - 2 \cdot \overrightarrow c \) als Pfeil dar!
Aufgabe 1133
AHS - 1_133 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechteck
Abgebildet ist das Rechteck RSTU
- Aussage 1: \(\overrightarrow {ST} = - \overrightarrow {RU}\)
- Aussage 2: \(\overrightarrow {SR} \,\,\,\parallel \,\,\,\overrightarrow {UT}\)
- Aussage 3: \(\overrightarrow {RS} + \overrightarrow {ST} = \overrightarrow {TR}\)
- Aussage 4: \(U = T + \overrightarrow {SR}\)
- Aussage 5: \(\overrightarrow {RT} \cdot \overrightarrow {SU} = 0\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1538
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trapez
Von einem Trapez ABCD sind die Koordinaten der Eckpunkte gegeben: A= (2|–6); B= (10|–2); C= (9|2); D= (3|y). Die Seiten a= AB und c= CD sind zueinander parallel.
Aufgabenstellung:
Geben Sie den Wert der Koordinate y des Punkts D an!
Aufgabe 1393
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Normalvektoren
Gegeben ist der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} { - 1}\\ 3\\ 5 \end{array}} \right)\)
- Aussage 1: \(\overrightarrow {{b_1}} = \left( {\begin{array}{*{20}{c}} 2\\ { - 1}\\ 1 \end{array}} \right)\)
- Aussage 2: \(\overrightarrow {{b_2}} = \left( {\begin{array}{*{20}{c}} 0\\ 0\\ { - 5} \end{array}} \right)\)
- Aussage 3: \(\overrightarrow {{b_3}} = \left( {\begin{array}{*{20}{c}} 0\\ 5\\ { - 3} \end{array}} \right)\)
- Aussage 4: \(\overrightarrow {{b_4}} = \left( {\begin{array}{*{20}{c}} 5\\ 0\\ 1 \end{array}} \right)\)
- Aussage 5: \(\overrightarrow {{b_5}} = \left( {\begin{array}{*{20}{c}} { - 1}\\ 3\\ 0 \end{array}} \right)\)
Aufgabenstellung:
Welche(r) der oben stehenden Vektoren \(\overrightarrow {{b_1}} \) ... \(\overrightarrow {{b_5}}\) steht/stehen normal auf den Vektor \(\overrightarrow a\) ? Kreuzen Sie den / die zutreffende(n) Vektor(en) an!
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
