Subtraktion zweier Vektoren
Bei der Subtraktion von Vektoren werden je Achsenrichtung die einzelnen Komponenten des 2. Vektors von jenen des 1. Vektors subtrahiert.
Hier findest du folgende Inhalte
Formeln
Vektoralgebra
Die Vektoralgebra beschäftigt sich mit den Grundrechenregeln für Vektoren
Addition zweier Vektoren
Bei der Addition von Vektoren werden die einzelnen Komponenten der Vektoren je Achsenrichtung addiert. Zwei Vektoren werden graphisch addiert, \(\overrightarrow s = \overrightarrow a + \overrightarrow b\) indem man die Vektoren aneinander hängt. Der Summenvektor \(\overrightarrow s\) stellt die Diagonale eines durch die beiden Vektoren aufgespannten Parallelogramms dar.
\(\overrightarrow s = \overrightarrow a + \overrightarrow b = \left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}}\\ {{a_z}} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{b_x}}\\ {{b_y}}\\ {{b_z}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{a_x} + {b_x}}\\ {{a_y} + {b_y}}\\ {{a_z} + {b_z}} \end{array}} \right)\)
Rechenregeln für die Vektoraddition
\(\begin{array}{l} \overrightarrow a + \overrightarrow b = \overrightarrow b + \overrightarrow a \\ \overrightarrow a + \left( {\overrightarrow b + \overrightarrow c } \right) = \left( {\overrightarrow a + \overrightarrow b } \right) + \overrightarrow c \\ k \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = k \cdot \overrightarrow a + k \cdot \overrightarrow b \\ \left| {\overrightarrow a + \overrightarrow b } \right| \le \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \end{array}\)
Illustration zur Addition zweier Vektoren
Subtraktion zweier Vektoren
Bei der Subtraktion von Vektoren werden die einzelnen Komponenten der Vektoren je Achsenrichtung subtrahiert. Zwei Vektoren werden graphisch subtrahiert, \(\overrightarrow d = \overrightarrow a - \overrightarrow b\) indem man den inversen Vektor von \(\overrightarrow b\) (gleich lang wie b, aber umgekehrte Richtung), also – b, addiert. Das Resultat einer Vektorsubtraktion wird als Differenzvektor bezeichnet.
\(\overrightarrow d = \overrightarrow a - \overrightarrow b = \left( {\begin{array}{*{20}{c}} {{a_x}}\\ {{a_y}}\\ {{a_z}} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {{b_x}}\\ {{b_y}}\\ {{b_z}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{a_x} - {b_x}}\\ {{a_y} - {b_y}}\\ {{a_z} - {b_z}} \end{array}} \right)\)
Illustration zur Subtraktion zweier Vektoren
Kommutativgesetz der Vektoralgebra
Das Kommutativgesetz der Vektoralgebra besagt, dass bei der Addition von Vektoren die Reihenfolge der Summanden beliebig vertauscht werden darf.
\(\overrightarrow A + \overrightarrow B = \overrightarrow B + \overrightarrow A \)
Distributivgesetze der Vektoralgebra
Das Distributivgesetz der Vektoralgebra besagt, dass man reelle Zahlen aus einer Summe heraushaben kann, wenn bei dieser Summe ein und der selbe Vektor mit unterschiedlichen reellen Zahlen multipliziert wird.
\(\eqalign{ & m\left( {n\overrightarrow A } \right) = \left( {mn} \right)\overrightarrow A = n\left( {m\overrightarrow A } \right) \cr & \left( {m + n} \right)\overrightarrow A = m\overrightarrow A + n\overrightarrow A \cr & m\left( {\overrightarrow A + \overrightarrow B } \right) = m\overrightarrow A + m\overrightarrow B \cr} \)
Assoziativgesetz der Vektoralgebra
Das Assoziativgesetz der Vektoralgebra besagt, dass bei der Addition von Vektoren die Klammern beliebig gesetzt werden dürfen.
\(\overrightarrow A + \left( {\overrightarrow B + \overrightarrow C } \right) = \left( {\overrightarrow A + \overrightarrow B } \right) + \overrightarrow C \)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 86
Subtraktion von Vektoren
Stelle die beiden gegebenen Vektoren als Pfeile von einem gemeinsamen Ausgangspunkt dar. Berechne und konstruiere dann den gefragten Vektor.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 5\\ 4 \end{array}} \right);\,\,\,\,\,\overrightarrow b = \left( {\begin{array}{*{20}{c}} 2\\ 4 \end{array}} \right);\)
Gesucht: \(\overrightarrow c = \overrightarrow a - \overrightarrow b \)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 87
Subtraktion von Vektoren
Stelle die beiden gegebenen Vektoren als Pfeile von einem gemeinsamen Ausgangspunkt dar. Berechne und konstruiere dann den gefragten Vektor.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 5\\ 4 \end{array}} \right);\,\,\,\,\,\overrightarrow b = \left( {\begin{array}{*{20}{c}} 2\\ 4 \end{array}} \right);\)
Gesucht: \(\overrightarrow c = \overrightarrow b - \overrightarrow a \)
Aufgabe 88
Ermitteln des Richtungsvektors
Auf einer Seekarte wird der Kurs eines Bootes eingezeichnet. Das Boot startet beim Startpunkt S(2/0) und kommt nach 12 Minuten Fahrt beim Zielpunkt Z(2/36) an. Das Boot hat sich mit konstanter Geschwindigkeit und auf geradlinigem Kurs von S nach Z bewegt.
An welchem Punkt P befindet sich das Boot nach 3 Minuten Fahrt?
Aufgabe 90
Subtraktion von Vektoren
Subtrahiere die beiden Vektoren
\(\eqalign{ & \overrightarrow a = \left( {\matrix{ 2 \cr 1 \cr } } \right);\,\,\,\,\,\overrightarrow b = \left( {\matrix{ 1 \cr 3 \cr } } \right); \cr & \overrightarrow c = \overrightarrow a - \overrightarrow b \cr}\)
Aufgabe 1443
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der unten stehenden Abbildung sind die Vektoren \(\overrightarrow a ,\,\,\overrightarrow b {\rm{ und }}\overrightarrow c \) als Pfeile dargestellt.
Aufgabenstellung:
Stellen Sie den Vektor \(\overrightarrow d = \overrightarrow a + \overrightarrow b - 2 \cdot \overrightarrow c \) als Pfeil dar!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1118
AHS - 1_118 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
Gegeben sind die Vektoren \(\overrightarrow a\)und \(\overrightarrow b\), die in der untenstehenden Abbildung als Pfeile dargestellt sind.
- Aufgabenstellung:
Stellen Sie \(\dfrac{1}{2} \cdot \overrightarrow b - \overrightarrow a\) ausgehend vom Punkt C durch einen Pfeil dar!
Aufgabe 1073
AHS - 1_073 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechnen mit Vektoren
Gegeben sind die Vektoren \(\overrightarrow r ,\,\,\overrightarrow s {\text{ und }}\overrightarrow t \)
- Aussage 1: \(\overrightarrow t + \overrightarrow s + \overrightarrow r = \overrightarrow 0\)
- Aussage 2: \(\overrightarrow t + \overrightarrow s = - \overrightarrow r \)
- Aussage 3: \(\overrightarrow t - \overrightarrow s = \overrightarrow r \)
- Aussage 4: \(\overrightarrow t - \overrightarrow r = \overrightarrow s \)
- Aussage 5: \(\overrightarrow t = \overrightarrow s + \overrightarrow r \)
Aufgabenstellung:
Kreuzen Sie die beiden für diese Vektoren zutreffenden Aussagen an!
Aufgabe 1346
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektorkonstruktion
Die Abbildung zeigt zwei als Pfeile dargestellte Vektoren
Aufgabenstellung:
Ergänzen Sie die unten stehende Abbildung um einen Pfeil, der vom Punkt P ausgeht und den Vektor \(\overrightarrow a - \overrightarrow b \) darstellt!
Aufgabe 1593
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Orthogonale Vektoren
Gegeben sind die nachstehend angeführten Vektoren:
\(\begin{array}{l} \overrightarrow a = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)\\ \overrightarrow b = \left( {\begin{array}{*{20}{c}} x\\ 0 \end{array}} \right)\\ \overrightarrow c = \left( {\begin{array}{*{20}{c}} 1\\ { - 2} \end{array}} \right)\\ \overrightarrow d = \overrightarrow a - \overrightarrow b \end{array}\)
Aufgabenstellung:
Berechnen Sie \(x \in {\Bbb R}\) so, dass die Vektoren \(\overrightarrow c\) und \(\overrightarrow d\) aufeinander normal stehen!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1130
AHS - 1_130 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechenoperationen bei Vektoren
Gegeben sind die Vektoren \(\overrightarrow a {\text{ und }}\overrightarrow b\) sowie ein Skalar \(r \in \mathbb{R}\) .
- Aussage 1: \(\overrightarrow a + r \cdot \overrightarrow b\)
- Aussage 2: \(\overrightarrow a + r\)
- Aussage 3: \(\overrightarrow a \cdot \overrightarrow b\)
- Aussage 4: \(r \cdot \overrightarrow b\)
- Aussage 5: \(\overrightarrow b - \overrightarrow a\)
Aufgabenstellung:
Welche der obigen Rechenoperationen liefert/liefern als Ergebnis wieder einen Vektor? Kreuzen Sie die zutreffende(n) Antwort(en) an!
Aufgabe 1785
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
In der nachstehenden Abbildung sind die vier Punkte P, Q, R und S sowie die zwei Vektoren \(\overrightarrow u {\text{ und }}\overrightarrow v \) dargestellt:
Aufgabenstellung:
Ordnen Sie den vier Vektoren jeweils den entsprechenden Ausdruck (aus A bis F) zu.
- 1. Vektor: \(\overrightarrow {PQ} \)
- 2. Vektor:\(\overrightarrow {PR} \)
- 3. Vektor: \(\overrightarrow {QR} \)
- 4. Vektor: \(\overrightarrow {PS} \)
- Ausdruck A: \(2 \cdot \overrightarrow u - \overrightarrow v \)
- Ausdruck B: \(2 \cdot \overrightarrow v - \overrightarrow u \)
- Ausdruck C: \( - \overrightarrow v \)
- Ausdruck D: \(2 \cdot \overrightarrow v + \overrightarrow u \)
- Ausdruck E: \(2 \cdot \overrightarrow u \)
- Ausdruck F: \(2 \cdot \overrightarrow u + 2 \cdot \overrightarrow v \)
[0 / ½ / 1 Punkt]
Aufgabe 4331
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Boule - Aufgabe B_444
Boule ist eine Sportart, bei der Kugeln geworfen werden. Ziel ist es, mit den eigenen Kugeln möglichst nah an eine Zielkugel zu gelangen.
Teil b
Für eine genauere Analyse eines Boule-Spiels wird mithilfe einer Drohne ein Luftbild aufgenommen.
- A = (2 | 10) ... Auflagepunkt der ersten Kugel
- B = (17 | 6) ... Auflagepunkt der zweiten Kugel
- Z = (4 | 1) ... Auflagepunkt der Zielkugel
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Lange der Strecke BZ.
[1 Punkt]
Während des Spiels bewegt sich die erste Kugel entlang der Strecke AB 3 cm in Richtung B.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Koordinaten der neuen Position des Auflagepunkts der ersten Kugel.
[2 Punkte]