Headerbar Werbung für Region "nicht-DACH"
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.3
Formel
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.3
(Un-)Gleichungen und Gleichungssysteme
AG 2.3: Quadratische Gleichungen in einer Variablen umformen/lösen, über Lösungsfälle Bescheid wissen, Lösungen und Lösungsfälle (auch geometrisch) deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG | Algebra und Geometrie sind einer der 5 Inhaltebereiche der standardisierten kompetenzorientierten Reifeprüfung in Mathematik an Österreichs AHS |
Aktuelle Lerneinheit
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.3 | Quadratische Gleichungen umformen und lösen |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Aufgaben zu diesem Thema
Aufgabe 1468
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die folgende quadratische Gleichung in der Unbekannten x über der Grundmenge \({\Bbb R}\)
\(\eqalign{ & 4{x^2} - d = 2 \cr & d \in {\Bbb R} \cr} \)
Aufgabenstellung:
Geben Sie denjenigen Wert für \(d \in {\Bbb R}\) an, für den die Gleichung genau eine Lösung hat!
Aufgabe 1347
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Die Anzahl der Lösungen der quadratischen Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) in der Menge der reellen Zahlen hängt von den Koeffizienten r, s und t ab.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die quadratische Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) hat genau dann für alle r ≠ 0; r, s, t ∈ ℝ ___1___ , wenn ___2___ gilt.
1 | |
zwei reelle Lösungen | A |
keine reelle Lösung | B |
genau eine reelle Lösung | C |
2 | |
\({r^2} - 4st > 0\) | I |
\({t^2} = 4rs\) | II |
\({s^2} - 4rt > 0\) | III |
Aufgabe 1592
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungen einer quadratischen Gleichung
Eine Gleichung, die man auf die Form \(a \cdot {x^2} + b \cdot x + c = 0{\text{ mit }}a,b,c \in {\Bbb R}\)umformen kann, nennt man quadratische Gleichung in der Variablen x mit den Koeffizienten a, b, c.
Aufgabenstellung:
Ergänzen Sie die Textlichen im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Eine quadratische Gleichung der Form \(a \cdot {x^2} + b \cdot x + c = 0\)mit ____1____ hat in jedem Fall _____2____
1 | |
a>0 und c>0 | A |
a>0 und c<0 | B |
a<0 und c<0 | C |
2 | |
zwei verschiedene reelle Lösungen | A |
genau eine reelle Lösung | B |
keine reelle Lösung | C |
Aufgabe 1016
AHS - 1_016 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Benzinverbrauch
Der Zusammenhang zwischen dem Benzinverbrauch y (in l/100 km) und der Geschwindigkeit x (in km/h) kann für einen bestimmten Autotyp durch die Funktionsgleichung \(y = 0,0005 \cdot {x^2} - 0,09 \cdot x + 10\) beschrieben werden.
Aufgabenstellung:
Ermitteln Sie rechnerisch, bei welcher Geschwindigkeit der Verbrauch 6 l/100 km beträgt!
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1161
AHS - 1_161 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichungen
Quadratische Gleichungen können in der Menge der reellen Zahlen keine, genau eine oder zwei verschiedene Lösungen haben.
A | \({\left( {x + 4} \right)^2} = 0\) |
B | \({\left( {x - 4} \right)^2} = 25\) |
C | \(x \cdot \left( {x - 4} \right) = 0\) |
D | \( - {x^2} - 16 = 0\) |
E | \({x^2} - 16 = 0\) |
F | \({x^2} - 8x + 16 = 0\) |
Aufgabenstellung:
Ordnen Sie jeder Lösungsmenge L die entsprechende quadratische Gleichung (aus A bis F) in der Menge der reellen Zahlen zu!
Deine Antwort | |
I: \(L = \left\{ {} \right\}\) | |
II: \(L = \left\{ { - 4;4} \right\}\) | |
III: \(L = \left\{ {0;4} \right\}\) | |
IV: \(L = \left\{ 4 \right\}\) |
Aufgabe 1737
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die quadratische Gleichung \({x^2} + r \cdot x + s = 0{\text{ in }}x \in {\Bbb R}{\text{ mit }}r,s \in {\Bbb R}\)
Aufgabenstellung:
Ordnen Sie den vier Lösungsfällen 1, 2, 3 und 4
- Lösungsfall 1: Die quadratische Gleichung hat keine reelle Lösung.
- Lösungsfall 2: Die quadratische Gleichung hat nur eine reelle Lösung \(x = - \dfrac{r}{2}\)
- Lösungsfall 3: Die quadratische Gleichung hat die reellen Lösungen x1 = 0 und x2 = –r
- Lösungsfall 4: Die quadratische Gleichung hat die reellen Lösungen \({x_1} = - \sqrt { - s} {\text{ und }}{x_2} = \sqrt { - s} \)
jeweils diejenige Aussage über die Parameter r und s (aus A bis F) zu, bei der stets der jeweilige Lösungsfall vorliegt. [0 / 0,5 / 1 Punkt]
A | \(\dfrac{{{r^2}}}{4} = s\) |
B | \(\dfrac{{{r^2}}}{4} - s > 0{\text{ mit }}r,s \ne 0\) |
C | \(r \in {\Bbb R},\,\,\,\,\,s > 0\) |
D | \(r = 0;\,\,\,\,\,s < 0\) |
E | \(r \ne 0;\,\,\,\,\,s = 0\) |
F | \(r = 0;\,\,\,\,\,s > 0\) |
Aufgabe 1002
AHS - 1_002 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung 3. Grades
Gegeben ist die Gleichung \(4x \cdot \left( {{x^2} - 2x - 15} \right) = 0\)
Aufgabenstellung:
Geben Sie die Lösungen dieser Gleichung an!
Aufgabe 1540
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)
Aufgabenstellung:
Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
a=
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1395
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung mit genau zwei Lösungen
Gegeben ist die folgende quadratische Gleichung in der Unbekannten x über der Grundmenge ℝ: \({x^2} + 10 \cdot x + q = 0\) mit: \(q \in {\Bbb R}\)
Aufgabenstellung:
Geben Sie an, für welche Werte für q ∈ ℝ die Gleichung genau zwei Lösungen besitzt!
Aufgabe 1567
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungen einer quadratischen Gleichung
Gegeben ist eine quadratische Gleichung \({x^2} + p \cdot x - 3 = 0{\text{ mit }}p \in {\Bbb R}\)
1 | |
unendlich viele reelle Lösungen | A |
genau eine reelle Lösung | B |
keine reelle Lösung | C |
2 | |
\(\dfrac{{{p^2}}}{4} + 3 > 0\) | I |
\(\dfrac{{{p^2}}}{4} + 3 < 0\) | II |
\(\dfrac{{{p^2}}}{4} + 3 > 1\) | III |
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Diese Gleichung hat ____1____ , wenn ____2____ gilt.
Aufgabe 1616
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungsfälle quadratischer Gleichungen
Gegeben ist eine quadratische Gleichung der Form \(r \cdot {x^2} + s \cdot x + t = 0\)in der Variablen x mit den Koeffizienten \(r,s,t \in {\Bbb R}\backslash \left\{ 0 \right\}\). Die Anzahl der reellen Lösungen der Gleichung hängt von r, s und t ab.
Aufgabenstellung:
Geben Sie die Anzahl der reellen Lösungen der gegebenen Gleichung an, wenn r und t verschiedene Vorzeichen haben, und begründen Sie Ihre Antwort allgemein!
Aufgabe 1490
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die quadratische Gleichung \({x^2} + p \cdot x - 12 = 0\)
Aufgabenstellung:
Bestimmen Sie denjenigen Wert für p, für den die Gleichung die Lösungsmenge \(L = \left\{ { - 2;\,\,6} \right\}\) hat!
Banner Werbung für Region DE
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
