Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Faktorisierte Darstellung einer quadratischen Gleichung

Faktorisierte Darstellung einer quadratischen Gleichung

Hier findest du folgende Inhalte

1
Formeln
    Formeln
    Wissenspfad
    Aufgaben

    Satz von Vieta

    Der Satz von Vieta erlaubt es quadratische Gleichungen die als Polynom, also als Summe oder Differenz, gegeben sind in ein Produkt umzurechnen. Die sogenannte "faktorisierte" Darstellung hat den Vorteil, dass man die Lösungen der Gleichung, bzw. die Nullstellen der Funktion direkt ohne weiterer Rechnung ablesen kann


    Satz von Vieta (Allgemeine Form)

    Der Satz von Vieta für allgemeine quadratische Gleichungen mit einer Variablen macht eine Aussage über den Zusammenhang zwischen den Koeffizienten a, b und c und den Lösungen bzw. Nullstellen x1 und x2 der Gleichung

    \(a{x^2} + bx + c = 0{\text{ mit: }}a,b,c \in {\Bbb R}\,\,\,\,\,a \ne 0\)

    Die bekannten Koeffizienten a, b und c hängen mit den gesuchten Nullstellen wie folgt zusammen

    \( - \dfrac{b}{a} = \left( {{x_1} + {x_2}} \right)\)

    \(\dfrac{c}{a} = \left( {{x_1} \cdot {x_2}} \right)\)

    ​Mit Hilfe dieser beiden Gleichungen kann man x1 und x2 einfach ausrechnen.


    Satz von Vieta (Normalform)

    Der Satz von Vieta für quadratischen Gleichung in Normalform mit einer Variablen macht eine Aussage über den Zusammenhang zwischen den Koeffizienten p und q und den Lösungen bzw. Nullstellen x1 und x2 der zugrunde liegenden Funktion bzw. Gleichung.

    \({x^2} + px + q = 0\,\,\,\,\,\,\,p,q\, \in \,{\Bbb R}\)

    Die bekannten Koeffizienten p und q hängen mit den gesuchten Nullstellen wie folgt zusammen

    \( - p = \left( {{x_1} + {x_2}} \right)\)

    \(q = {x_1} \cdot {x_2}\)

    ​Mit Hilfe dieser beiden Gleichungen kann man x1 und x2 einfach ausrechnen.


    Faktorisieren

    Beim Faktorisieren wird eine Summe in ein Produkt aus zwei oder mehr Faktoren umgewandelt. Enthalten alle Summanden eines Summen- bzw. Differenzenterms den gemeinsamen Faktor a, so kann man diesen herausheben.

    \(a \cdot b \pm a \cdot c = a \cdot \left( {b \pm c} \right)\)


    Zerlegung in Linearfaktoren für Polynome zweiten Grades

    Unter Verwendung der mit Hilfe vom Satz von Vieta ermittelten Nullstellen x1 und x2 kann man die quadratische Gleichung nunmehr in Linearfaktoren zerlegt anschreiben.
    \(a{x^2} + bx + c = a\left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right)\)

    \({x^2} + px + q = \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right)\)


    Faktorisierte Darstellung einer (quadratischen) Gleichung

    Bei der faktorisierten Darstellung einer Gleichung wird die Gleichung als Produkt dargestellt. Dabei sind die Nullstellen x1, x2 der zugrunde liegenden Funktion in den geklammerten Termen sofort ablesbar. Der Satz vom Nullprodukt besagt nämlich, dass ein Produkt genau dann Null ist, wenn mindestens einer der Faktoren Null ist.
    \(f\left( x \right) = a \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \to L\left\{ {{x_1},{x_2}} \right\}{\text{ mit }}a \ne 0\)

    Im Sonderfall einer doppelten Nullstelle sieht die Darstellung der Funktion wie folgt aus:
    \(f\left( x \right) = a \cdot {\left( {x - {x_1}} \right)^2} \to L\left\{ {{x_1}} \right\}{\text{ mit }}a \ne 0\)
     

    • Von der faktorisierten Darstellung gelangt man durch ausmultiplizieren zur allgemeinen Form.
    • Von der allgemeinen Form gelangt man zur faktorisierten Form, indem man die Nullstellen der Gleichung ausrechnet und mit deren Hilfe dann die faktorisierte Form anschreibt.

    Linearfaktorzerlegung für Polynome n-ten Grads

    Bei der Linearfaktorzerlegung wird die Summendarstellung eines Polynoms n-ten Grades faktorisiert, also in eine Produktdarstellung umgerechnet.

    \(\eqalign{ & {p_n}\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ... + {a_2}{x^2} + {a_1}x + {a_0} = \cr & = {a_n} \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cdot ... \cdot \left( {x - {x_n}} \right) \cdot {\text{Restglied}} \cr} \)

    → Der Vorteil der Darstellung von Polynomen mit Hilfe von Linearfaktoren besteht darin, dass man die Nullstellen der zugrunde liegenden Funktionen bzw. die Lösungen der zugrunde liegenden Gleichungen direkt ablesen kann.

    Die Vorgehensweise bei der Linearfaktorzerlegung ist folgende:

    Wenn man alle Nullstellen xi bereits kennt, kann man die Linearfaktoren direkt anschreiben.

    Wenn man die Nullstellen noch nicht kennt, versucht man eine Nullstelle x1 und somit den zugehörigen Linearfaktor (x-x1) zu erraten. Anschließend dividiert man das Ausgangspolynom pn durch den Linearfaktor. Das Restpolynom pn-1 hat sich gegenüber dem Ausgangspolynom um einen Grad erniedrigt und man kennt bereits einen Linearfaktor bzw. eine Nullstelle vom Ausgangspolynom.

    \(\eqalign{ & {p_n}\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ... + {a_2}{x^2} + {a_1}x + {a_0} = \cr & = \left( {x - {x_1}} \right) \cdot {p_{n - 1}}\left( x \right) \cr} \)

    Nun versucht man vom Restpolynom pn-1 wieder eine Nullstelle x2 und somit den zugehörigen Linearfaktor (x-x2) zu erraten, usw. Irgendwann bleibt ein Restglied über, welches selbst keine Nullstelle besitzt.


    Hornersche Regel zur Linearfaktorzerlegung

    Die hornersche Regel funktioniert nur in jenen (seltenen) Spezialfällen wo die Gleichung „x hoch n“ MINUS „c hoch n“ lautet. Sie hilft dabei, den Grad vom Polynom um 1 zu reduzieren, wodurch man schon mal eine Nullstelle gefunden hat und der verbleibende Rest vom Polynom einfacher zu faktorisieren ist, um alle Nullstellen (Lösungen) zu erhalten.

    \(\left( {{x^n} - {c^n}} \right) = \left( {x - c} \right) \cdot \left[ {{x^{n - 1}} \cdot 1 + {x^{n - 2}} \cdot {c^1} + {x^{n - 3}} \cdot {c^2} + ... + x \cdot {c^{n - 2}} + 1 \cdot {c^{n - 1}}} \right]\)


    Horner'sches Schema zur Linearfaktorzerlegung

    Beim hornerschen Schema handelt es sich um ein Umformungsverfahren um einfach die Nullstellen eines Polynoms zu finden. Dazu muss man versuchen, eine Nullstelle zu erraten.

    Satz von Vieta
    Linearfaktoren
    Faktorisieren
    Linearfaktoren für Polynome zweiten Grades
    Horner-Regel
    Horner-Schema
    Faktorisierte Darstellung einer quadratischen Gleichung
    Linearfaktorzerlegung
    Satz vom Nullprodukt
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(5,149,183)
    Bild
    Illustration Strandliegen 1050x450
    Startseite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH