Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Diskriminante gleich Null

Diskriminante gleich Null

Die Diskriminante ist ein Wert der unter einer Wurzel in der Lösung von quadratischen Gleichungen steht. Abhängig vom Wert der Diskriminante haben quadratische Gleichungen entweder zwei, eine oder keine Lösung im Bereich der reellen Zahlen. Für D=0 gibt es eine, genauer 2 gleiche, Lösungen in R

Hier findest du folgende Inhalte

1
Formeln
7
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Quadratischen Gleichung mit einer Variablen

    In dieser Mikro-Lerneinheit lernst du mehrere Methoden, wie man quadratische Gleichungen lösen kann. Wir werden die allgemeine quadratische Gleichung mittels der abc-Formel (große Lösungsformel) und die normierte quadratische Gleichung mittels der pq-Formel (kleine Lösungsformel) lösen. Mit Hilfe der Diskriminante erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehört.


    Gleichung 2. Grades

    Eine allgemeine quadratische Gleichung in einer Variablen besteht aus einem quadratischen, einem linearen und einem konstanten Glied

    \(a \cdot {x^2} + b \cdot x + c = 0\)

    Damit es sich auch wirklich um eine quadratische Gleichung handelt, muss a≠0 und es darf auch kein Term höherer als zur 2. Potenz vorkommen. Eventuell muss man die Null auf der rechten Seite vom Gleichheitszeichen durch Äquivalenzumformungen herbeiführen.

    • Parameter a: mit zunehmenden a wird der Graph der Parabel immer steiler
    • Parameter b: mit zunehmenden b verschiebt sich der Scheitelpunkt der Parabel entlang einer Geraden mit 45° Steigung vom Ursprung weg
    • Parameter c: verschiebt den Graph der Parabel in Richtung der y-Achse

    Lösung einer allgemeinen quadratischen Gleichung mittels abc-Formel

    Die Lösung einer allgemeinen quadratischen Formel erfolgt mittels der abc-Formel. Die abc-Formel wird auch gerne "„Mitternachtsformel“

    oder „große Lösungsformel“ genannt.

    \(\eqalign{ & a{x^2} + bx + c = 0 \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr & D = {b^2} - 4ac \cr}\)

    Man erhält 2 Lösungen, die Lösung für x1 ergibt sich, wenn man vor der Wurzel das "+" rechnet, die Lösung für x2 ergibt sich, wenn man vor der Wurzel das "-" rechnet.


    Quadratische Gleichung in Normalform

    Bei einer quadratischen Gleichung in Normalform ist der Koeffizient vor dem quadratischen Glied eine "1". Darüber hinaus gibt es noch ein lineares und ein konstantes Glied

    \({x^2} + px + q = 0\)


    Normierte quadratische Gleichung

    Man kann die allgemeine quadratische Gleichung in eine quadratische Gleichung in Normalform durch Division der Gleichung durch a, also dem Koeffizienten im quadratischen Glied, wie folgt umrechnen bzw. normieren

    \(\eqalign{ & a \cdot {x^2} + b \cdot x + c = 0\,\,\,\,\,\left| {:a} \right. \cr & {x^2} + \frac{b}{a} \cdot x + \frac{c}{a} = 0 \cr & {x^2} + p \cdot x + q = 0 \cr & {\text{mit}} \cr & {\text{p = }}\dfrac{b}{a};\,\,\,\,\,q = \dfrac{c}{a} \cr} \)


    Lösung einer quadratischen Gleichung in Normalform mittels pq-Formel

    Die Lösung einer quadratischen Gleichung in Normalform erfolgt mittels der pq Formel, auch "kleine Lösungsformel" genannt.

    \(\eqalign{ & {x^2} + px + q = 0\, \cr & {x_{1,2}} = - \dfrac{p}{2} \pm \sqrt {{{\left( {\dfrac{p}{2}} \right)}^2} - q\,\,\,\,} \cr & D = {\left( {\dfrac{p}{2}} \right)^2} - q \cr}\)

     

    Der Satz von Vieta bietet eine Möglichkeit einer Probe, denn es muss gelten: 

    \(\eqalign{ & {x_1} + {x_2} = - p = - \dfrac{b}{a} \cr & {x_1} \cdot {x_2} = q = \dfrac{c}{a} \cr} \)

     

    Anmerkung: Man kann jede quadratische Gleichung mit der abc Formel lösen. Ob es eine Vereinfachung bringt eine allgemeine quadratische Gleichung mittels Division durch a auf die Normalform zuzurechnen, um dann die etwas einfachere pq-Formel nützen zu können muss man individuell entscheiden. Im Zeitalter vom Taschenrechner, wird es sich wohl nicht auszahlen.


    Rein quadratische Gleichung

    Bei einer rein quadratischen Gleichung gibt es nur ein quadratisches und ein konstantes, aber kein lineares Glied.

    \(a \cdot {x^2} + c = 0\)


    Lösung einer rein quadratischen Gleichung mittels Äquivalenzumformung

    Die Lösung einer rein quadratischen Gleichung erfolgt durch Äquivalenzumformung

    \(\eqalign{ & a \cdot {x^2} + c = 0 \cr & {x_{1,2}} = \pm \sqrt { - \dfrac{c}{a}} \cr & D = - \dfrac{c}{a} \cr} \)


    Diskriminante

    In allen drei Lösungen ist ein Wurzelausdruck enthalten. Den Wert unter dem Wurzelzeichen nennt man Diskriminante. Mit Hilfe der Diskriminanten erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehören.

    Quadratische Gleichungen haben, abhängig von der Diskriminante "D" drei mögliche Lösungsfälle.

    1. Fall: D > 0 à 2 Lösungen in R, die zugrunde liegende Funktion hat 2 Nullstellen. Dh der Graph der Funktion schneidet 2-Mal die x-Achse 
    2. Fall: D = 0
    à 1 (eigentlich 2 gleiche) Lösung in R, die zugrunde liegende Funktion hat 1 doppelte Nullstelle. Dh der Graph der Funktion berührt die x-Achse. \({x_1} = {x_2} = \dfrac{{ - b}}{{2a}}{\text{ bzw}}{\text{. }}{{\text{x}}_1} = {x_2} = - \dfrac{p}{2}\)
    3. Fall: D < 0
    à keine Lösung in R, aber 2 konjugiert komplexe Lösungen in C. Der Graph der zugrunde liegenden Funktion berührt oder schneidet die x-Achse nicht.


    Illustration vom Zusammenhang zwischen Diskriminante und Anzahl der reellen Nullstellen
    Bild
    Allgemeine quadratische Gleichung

    Quadratische Gleichung mit komplexer Lösung

    Im Bereich der komplexen Zahlen lassen sich nun auch jene quadratischen Gleichungen lösen, deren Diskriminante kleiner Null ist - d.h. deren Wert unter der Wurzel negativ ist. In diesem Fall gibt es 2 zu einander konjugiert komplexe Lösungen.

    \(D < 0: \pm \sqrt { - D} = \pm \sqrt { - 1 \cdot D} = \pm \sqrt { - 1} \cdot \sqrt D = \pm i \cdot \sqrt D \)

    → Wir gehen im Kapitel über komplexe Zahlen auf das Thema näher ein.

    Rechnerische Lösung einer quadratischen Gleichung
    Normalform
    pq-Formel
    Konjugiert komplexe Lösungen
    Diskriminante gleich Null
    Diskriminante größer Null
    Diskriminante kleiner Null
    Normierte quadratischen Gleichung
    Diskriminante
    Quadratische Gleichung mit komplexer Lösung
    Rechnerische Lösung einer rein quadratischen Gleichung
    Gleichung zweiten Grades
    Quadratisches Glied
    Lineares Glied
    Konstantes Glied
    Quadratische Gleichung mit einer Variablen
    abc-Formel
    Mitternachtsformel
    Gleichung der Parabel
    Allgemeine quadratische Gleichung
    Große Lösungsformel für quadratische Gleichungen
    Kleine Lösungsformel für quadratische Gleichungen
    Satz von Vieta
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Sandstrand 1050x450
    Startseite
    Aufgaben
    LösungswegBeat the Clock

    Aufgabe 66

    Welche 3 Lösungsfälle können bei quadratischen Gleichungen auftreten? Unterscheide an Hand der Diskriminante!

    Quadratische Gleichung mit einer Variablen
    Normierte quadratischen Gleichung
    Diskriminante gleich Null
    Diskriminante größer Null
    Diskriminante kleiner Null
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Sandstrand 1050x450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 69

    Quadratische Gleichung mit einer Variablen

    Gegeben sei folgende quadratische Gleichung

    \({x^2} = k\)

    Für welche k hat diese Gleichung eine, zwei bzw. keine Lösung in R?

    Quadratische Gleichung mit einer Variablen
    Lineares Glied
    Diskriminante gleich Null
    Diskriminante größer Null
    Diskriminante kleiner Null
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 74

    Quadratische Gleichung mit einer Variablen

    Gegeben sei folgende quadratische Gleichung:

    Berechne:
    \({x^2} - 6x + 9 = 0\)

    Quadratische Gleichung mit einer Variablen
    pq-Formel
    Diskriminante gleich Null
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 76

    Quadratische Gleichung mit einer Variablen

    Gegeben sei folgende quadratische Gleichung:

    \({x^2} - 6x + k = 0\)

    Für welche k hat diese Gleichung eine, zwei bzw. keine Lösung in \({\Bbb R}\)?

    Quadratische Gleichung mit einer Variablen
    pq-Formel
    Diskriminante gleich Null
    Diskriminante größer Null
    Diskriminante kleiner Null
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 77

    Quadratische Gleichung mit einer Variablen

    Gegeben sei folgende quadratische Gleichung:

    \(2{x^2} + bx + 18 = 0\)

    Für welche b in \({\Bbb R}\) hat diese Gleichung genau eine Lösung?

    Quadratische Gleichung mit einer Variablen
    abc-Formel
    Lineares Glied
    Diskriminante gleich Null
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Sandstrand 1050x450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 78

    Quadratische Gleichung mit einer Variablen

    Gegeben sei folgende quadratische Gleichung:

    \(4{x^2} - 12x + c = 0\)

    Für welche c in \({\Bbb R}\) hat diese Gleichung genau eine Lösung?

    Quadratische Gleichung mit einer Variablen
    abc-Formel
    Konstantes Glied
    Diskriminante gleich Null
    Fragen oder Feedback
    Lösungsweg
    PDF

    Aufgabe 1540

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
    Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Quadratische Gleichung

    Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25 = 0{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)


    Aufgabenstellung [0 / 1 P.]  – Bearbeitungszeit < 5 Minuten
    Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
    a=

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 2.3
    Diskriminante gleich Null
    abc-Formel
    Quadratische Gleichung - 1540. Aufgabe 1_540
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH