Satz vom Nullprodukt
Hier findest du folgende Inhalte
Formeln
Grundrechnungsarten
Die vier Grundrechnungsarten umfassen die "Strichrechnungsarten" Addition und Subtraktion, sowie die "Punktrechnungsarten" Multiplikation und Division
Addition
Die Addition ist der lateinische Name für die Plus Rechnung. Summand plus Summand ist gleich der Summe
- Summand ist die Zahl die dazu zuzählen ist
- Summe ist das Resultat einer Plus Rechnung
Subtraktion
Die Subtraktion ist der lateinische Name für die Minus Rechnung. Minuend minus Subtrahend ist gleich der Differenz
- Minuend ist die Zahl von der etwas abgezogen wird
- Subtrahend ist die Zahl die abgezogen wird
- Differenz ist das Resultat einer Minus Rechnung
Addition und Subtraktion sind entgegengesetzte Rechenoperationen. Addiert man eine Zahl und subtrahiert man sie wieder, so erhält man die Ausgangszahl
Multiplikation
Die Multiplikation ist der lateinische Name für die Mal Rechnung. Faktor mal Faktor ist gleich dem Produkt
- Faktor ist die Zahl die multipliziert wird oder die Zahl mit der multipliziert wird
- Produkt ist das Resultat einer Mal Rechnung
Satz vom Nullprodukt
Ein Produkt ist dann null, wenn zumindest einer der beiden Faktoren null ist.
Division
Die Division ist der lateinische Name für das Teilen. Dividend durch Divisor ist gleich dem Quotient
- Dividend ist die Zahl die zu teilen ist
- Divisor ist die Zahl durch die geteilt wird
- Quotient ist das Resultat einer Geteilt Rechnung
Multiplikation und Division sind entgegengesetzte Rechenoperationen. Multipliziert man mit eine Zahl und dividiert man durch diese Zahl wieder, so erhält man die Ausgangszahl
Vorzeichenregeln bei Multiplikation und Division
- Plus mal / geteilt durch plus ergibt plus
- Plus mal / geteilt durch minus ergibt minus
- Minus mal / geteilt durch plus ergibt minus
- Minus mal / geteilt durch minus ergibt plus
Rechengesetze für reelle Zahlen
Für die vier Grundrechnungsarten gibt es mathematische Regeln, die in Form von Rechengesetzen formuliert sind
Kommutativgesetz (Vertauschungsgesetz)
- ... der Addition: Summanden darf man vertauschen
\(a + b = b + a\) - ... der Multiplikation: Faktoren darf man vertauschen
\(a \cdot b = b \cdot a\)
Assoziativgesetz (Verbindungsgesetz)
- ... der Addition: Summanden darf man zu Teilsummen verbinden
\(\left( {a + b} \right) + c = a + \left( {b + c} \right)\) - ... der Multiplikation: Faktoren darf man zu Produkten verbinden
\(\left( {a \cdot b} \right) \cdot c = a \cdot \left( {b \cdot c} \right)\)
Distributivgesetz (Verteilungsgesetz)
- Klammern dürfen ausmultipliziert werden
\(\eqalign{ & a \cdot \left( {b + c} \right) = a \cdot b + a \cdot c \cr & a \cdot \left( {b - c} \right) = a \cdot b - a \cdot c \cr} \)
Interaktive Illustration auf der Website von Geogebra.org anzeigen
Wenn Du obigem Link folgst, verlässt Du unsere Website. Die Website des Fremdanbieters wird sich in einem neuen Fenster öffnen.
Existenz eines neutralen Elements
- das neutrales Element der Addition und der Subtraktion ist 0
x+0=x; x-0=x - das neutrales Element der Multiplikation und der Division ist 1
x*1=x; x:1=x
Existenz eines inversen Elements
- das inverse Element der Addition ist (-x), das der Subtraktion ist (+x)
x+(-x)=0; -x+(+x)=0 - das inverse Element der Multiplikation ist x-1, das der Division ist x
\(x \cdot {x^{ - 1}} = 1;\,\,\,\,\,\dfrac{1}{x} \cdot x = 1\,\,\,\,\,{\rm{für x}} \ne {\rm{0}}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Satz von Vieta
Der Satz von Vieta erlaubt es quadratische Gleichungen die als Polynom, also als Summe oder Differenz, gegeben sind in ein Produkt umzurechnen. Die sogenannte "faktorisierte" Darstellung hat den Vorteil, dass man die Lösungen der Gleichung, bzw. die Nullstellen der Funktion direkt ohne weiterer Rechnung ablesen kann
Satz von Vieta (Allgemeine Form)
Der Satz von Vieta für allgemeine quadratische Gleichungen mit einer Variablen macht eine Aussage über den Zusammenhang zwischen den Koeffizienten a, b und c und den Lösungen bzw. Nullstellen x1 und x2 der Gleichung
\(a{x^2} + bx + c = 0{\text{ mit: }}a,b,c \in {\Bbb R}\,\,\,\,\,a \ne 0\)
Die bekannten Koeffizienten a, b und c hängen mit den gesuchten Nullstellen wie folgt zusammen
\( - \dfrac{b}{a} = \left( {{x_1} + {x_2}} \right)\)
\(\dfrac{c}{a} = \left( {{x_1} \cdot {x_2}} \right)\)
Mit Hilfe dieser beiden Gleichungen kann man x1 und x2 einfach ausrechnen.
Satz von Vieta (Normalform)
Der Satz von Vieta für quadratischen Gleichung in Normalform mit einer Variablen macht eine Aussage über den Zusammenhang zwischen den Koeffizienten p und q und den Lösungen bzw. Nullstellen x1 und x2 der zugrunde liegenden Funktion bzw. Gleichung.
\({x^2} + px + q = 0\,\,\,\,\,\,\,p,q\, \in \,{\Bbb R}\)
Die bekannten Koeffizienten p und q hängen mit den gesuchten Nullstellen wie folgt zusammen
\( - p = \left( {{x_1} + {x_2}} \right)\)
\(q = {x_1} \cdot {x_2}\)
Mit Hilfe dieser beiden Gleichungen kann man x1 und x2 einfach ausrechnen.
Faktorisieren
Beim Faktorisieren wird eine Summe in ein Produkt aus zwei oder mehr Faktoren umgewandelt. Enthalten alle Summanden eines Summen- bzw. Differenzenterms den gemeinsamen Faktor a, so kann man diesen herausheben.
\(a \cdot b \pm a \cdot c = a \cdot \left( {b \pm c} \right)\)
Zerlegung in Linearfaktoren für Polynome zweiten Grades
Unter Verwendung der mit Hilfe vom Satz von Vieta ermittelten Nullstellen x1 und x2 kann man die quadratische Gleichung nunmehr in Linearfaktoren zerlegt anschreiben.
\(a{x^2} + bx + c = a\left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right)\)
\({x^2} + px + q = \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right)\)
Faktorisierte Darstellung einer (quadratischen) Gleichung
Bei der faktorisierten Darstellung einer Gleichung wird die Gleichung als Produkt dargestellt. Dabei sind die Nullstellen x1, x2 der zugrunde liegenden Funktion in den geklammerten Termen sofort ablesbar. Der Satz vom Nullprodukt besagt nämlich, dass ein Produkt genau dann Null ist, wenn mindestens einer der Faktoren Null ist.
\(f\left( x \right) = a \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \to L\left\{ {{x_1},{x_2}} \right\}{\text{ mit }}a \ne 0\)
Im Sonderfall einer doppelten Nullstelle sieht die Darstellung der Funktion wie folgt aus:
\(f\left( x \right) = a \cdot {\left( {x - {x_1}} \right)^2} \to L\left\{ {{x_1}} \right\}{\text{ mit }}a \ne 0\)
- Von der faktorisierten Darstellung gelangt man durch ausmultiplizieren zur allgemeinen Form.
- Von der allgemeinen Form gelangt man zur faktorisierten Form, indem man die Nullstellen der Gleichung ausrechnet und mit deren Hilfe dann die faktorisierte Form anschreibt.
Linearfaktorzerlegung für Polynome n-ten Grads
Bei der Linearfaktorzerlegung wird die Summendarstellung eines Polynoms n-ten Grades faktorisiert, also in eine Produktdarstellung umgerechnet.
\(\eqalign{ & {p_n}\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ... + {a_2}{x^2} + {a_1}x + {a_0} = \cr & = {a_n} \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cdot ... \cdot \left( {x - {x_n}} \right) \cdot {\text{Restglied}} \cr} \)
→ Der Vorteil der Darstellung von Polynomen mit Hilfe von Linearfaktoren besteht darin, dass man die Nullstellen der zugrunde liegenden Funktionen bzw. die Lösungen der zugrunde liegenden Gleichungen direkt ablesen kann.
Die Vorgehensweise bei der Linearfaktorzerlegung ist folgende:
Wenn man alle Nullstellen xi bereits kennt, kann man die Linearfaktoren direkt anschreiben.
Wenn man die Nullstellen noch nicht kennt, versucht man eine Nullstelle x1 und somit den zugehörigen Linearfaktor (x-x1) zu erraten. Anschließend dividiert man das Ausgangspolynom pn durch den Linearfaktor. Das Restpolynom pn-1 hat sich gegenüber dem Ausgangspolynom um einen Grad erniedrigt und man kennt bereits einen Linearfaktor bzw. eine Nullstelle vom Ausgangspolynom.
\(\eqalign{ & {p_n}\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ... + {a_2}{x^2} + {a_1}x + {a_0} = \cr & = \left( {x - {x_1}} \right) \cdot {p_{n - 1}}\left( x \right) \cr} \)
Nun versucht man vom Restpolynom pn-1 wieder eine Nullstelle x2 und somit den zugehörigen Linearfaktor (x-x2) zu erraten, usw. Irgendwann bleibt ein Restglied über, welches selbst keine Nullstelle besitzt.
Hornersche Regel zur Linearfaktorzerlegung
Die hornersche Regel funktioniert nur in jenen (seltenen) Spezialfällen wo die Gleichung „x hoch n“ MINUS „c hoch n“ lautet. Sie hilft dabei, den Grad vom Polynom um 1 zu reduzieren, wodurch man schon mal eine Nullstelle gefunden hat und der verbleibende Rest vom Polynom einfacher zu faktorisieren ist, um alle Nullstellen (Lösungen) zu erhalten.
\(\left( {{x^n} - {c^n}} \right) = \left( {x - c} \right) \cdot \left[ {{x^{n - 1}} \cdot 1 + {x^{n - 2}} \cdot {c^1} + {x^{n - 3}} \cdot {c^2} + ... + x \cdot {c^{n - 2}} + 1 \cdot {c^{n - 1}}} \right]\)
Horner'sches Schema zur Linearfaktorzerlegung
Beim hornerschen Schema handelt es sich um ein Umformungsverfahren um einfach die Nullstellen eines Polynoms zu finden. Dazu muss man versuchen, eine Nullstelle zu erraten.
Aufgaben
Aufgabe 1639
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungsmenge einer quadratischen Gleichung
Gegeben ist eine quadratische Gleichung der Form \({x^2} + a \cdot x = 0\) in x mit \(a \in {\Bbb R}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie denjenigen Wert für a, für den die gegebene Gleichung die Lösungsmenge \(L = \left\{ {0;\dfrac{6}{7}} \right\}\) hat.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1880
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer quadratischen Gleichung
Gegeben ist die quadratische Gleichung
\({x^2} + k \cdot x + 4 \cdot k = 0{\text{ mit dem Parameter }}k \in {\Bbb R} \)
Aufgabenstellung [0 / 0,5 /1 P.] – Bearbeitungszeit < 5 Minuten
Ermitteln Sie die zwei unterschiedlichen Werte k1 und k2 von k, für die die gegebene Gleichung genau eine Lösung hat.
Aufgabe 3093
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Jänner 2023 - Teil-2-Aufgaben - 3. Aufgabe - Best of Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Spezielle Polynomfunktionen vierten Grades – 2123. Aufgabe 2_123
Teil c
Gegeben ist eine Polynomfunktion g mit
\(g\left( x \right) = d \cdot {\left( {x + e} \right)^2} \cdot {\left( {x - e} \right)^2}{\text{ mit }}d \ne 0{\text{ und }}e \in {\Bbb R}\)
Der Graph von g verlauft durch den Punkt N = (2 | 0).
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie unter diesen Voraussetzungen alle möglichen Werte von e.
[0 / 1 P.]