Gleichungen
Hier findest du folgende Inhalte
Formeln
Lineare Gleichung mit einer Variablen
Eine Gleichung in der genau eine Variable und diese nur in der ersten Potenz vorkommt, heißt lineare Gleichung oder Gleichung ersten Grades mit einer Variablen. Lineare Gleichungen in einer Variablen sind eindeutig lösbar, d.h. sie haben genau eine Lösung. Diese Lösung findet man, indem man die Variable explizit macht.
Beispiel:
\(a \cdot x + b = 0 \to x = - \dfrac{b}{a}\)
Allgemeine Form einer linearen Gleichung
\(a \cdot x + b = c\)
Normalform einer Gleichung
Bei der Normalform einer Gleichung ist der Koeffizient vor der Variablen mit dem höchsten Grad eine "1" und rechts vom Gleichheitszeichen steht eine Null.
\(x + d = 0\)
Unterschied Normalform und Nullform
Bei der Nullform steht rechts vom Rechenzeichen eine Null
\(a \cdot x + b = 0\)
Bei der Normalform ist der Koeffizient vor der Variable mit dem höchsten Grad eine 1
\(x + b = c\)
Üblicher Weise bring man Gleichungen zuerst in die Nullform und anschließend in die Normalform, bei der die Null rechts vom Rechenzeichen erhalten bleibt. Man kann die allgemeine Form durch Umformung etwa wie folgt zuerst in die Nullform und anschließend in die Normalform umwandeln:
\(\eqalign{ & a \cdot x + b = c\,\,\,\,\,\left| { - c} \right. \cr & a \cdot x + \left( {b - c} \right) = 0\,\,\,\,\,\left| {:a} \right. \cr & x + \frac{{b - c}}{a} = 0 \cr} \)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Äquivalenzumformungen bei Gleichungen
Unter einer Äquivalenzumformung einer Gleichung versteht eine Umformung, die den Wahrheitswert der Gleichung unverändert lässt. Eine Äquivalenzumformung ändert also die Lösung einer Gleichung nicht. Äquivalenzumformungen umfassen das Zusammenfassen von Termen auf einer oder beiden Seiten der Gleichung. Weiters handelt es sich dabei um die Addition, Subtraktion, Multiplikation oder Division eines gleichen Terms auf beiden Seiten der Gleichung. Zudem darf man die beiden Seiten einer Gleichung, linke Seite bzw. rechte Seite vom Gleichheitszeichen, mit einander vertauschen.
Nicht jede Umformung einer Gleichung ist eine Äquivalenzumformung
Die Division durch die Variable x ist keine Äquivalenzumformung.
Beispiel
\(\eqalign{ & {x^2} - 5x = 0\,\,\,\,\,\,\,\,\left| {:x} \right. \cr & x - 5 = 0 \cr} \)
Die Lösungsmenge der quadratischen Gleichung besteht aus den 2 Elementen: \(L = \left\{ {0;5} \right\}\), die Lösungsmenge der linearen Gleichung besteht nur mehr aus einer Lösung \(L = \left\{ 5 \right\}\), es ist somit eine Lösung verloren gegangen, daher ist diese Umformung unzulässig.
Gleichungen
Eine Gleichung ist eine mathematische Schreibweise, die zwei Terme durch ein Gleichheitszeichen verbindet.
Gleichungssystem
Mehrere zusammengehörende Gleichungen bezeichnet man als Gleichungssystem. Eine Lösung des Gleichungssystems liegt dann vor, wenn man jeder der n Variablen genau einen Zahlenwert zuordnen kann, sodass alle m Gleichungen zu wahren Aussagen werden. Wenn man eine Lösung gefunden hat, empfiehlt sich die Probe durch einsetzen der Werte der Variablen in die Gleichungen des Gleichungssystems.
\(\matrix{ {{a_1} \cdot x} & { + {b_1}.y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2}.y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
wobei:
x, y | Variablen |
\({a_i},\,\,{b_i},\,\,{c_i}\,\, \in {\Bbb R}\) | Koeffizienten |
Homogenes und inhomogenes Gleichungssystem
- Bei einer homogenen Gleichung steht auf der rechten Seite der Gleichung eine Null. Wenn also in obigem Gleichungssystem alle ci=0 sind, dann spricht man von homogenen Gleichungssystemen
- Bei einer inhomogenen Gleichung steht auf der rechten Seite der Gleichung keine Null. Wenn also in obigem Gleichungssystem mindestens ein ci=0 ist, dann spricht man von inhomogenen Gleichungsystemen
Anzahl unterschiedlicher Variablen in einer Gleichung
Die Anzahl der unterschiedlichen Variablen in einer Gleichung muss gleich sein der Anzahl der von einander unabhängigen Gleichungen, damit das Gleichungssystem sicher eindeutig lösbar ist.
Gleichung mit keiner Variablen: Eine Gleichung ohne Variable ist eine triviale Aussage. Hier kann man nur prüfen ob es sich bei der Gleichung um eine wahre Aussage handelt, oder nicht
Beispiel:
\(1 + 3 = 4\)
Gleichung mit einer Variablen: Eine Gleichung mit einer Variablen formt man so um, dass die Variable explizit wird.
Beispiel:
\(x + 3 = 5 \to x = 2\)
Gleichungssystem mit mehreren Variablen: Gibt es zwei oder mehrere Variablen, so muss es auch zwei oder mehrere Gleichungen geben. Dann spricht man von einem Gleichungssystem. Die Lösung muss alle Gleichungen erfüllen
Beispiel:
\(\eqalign{ & {a_{11}} \cdot {x_1} + {a_{12}} \cdot {x_2} + ... + {a_{1n}} \cdot {x_n} = {c_1} \cr & {a_{21}} \cdot {x_1} + {a_{22}} \cdot {x_2} + ... + {a_{2n}} \cdot {x_n} = {c_2} \cr & ... \cr & {a_{m1}} \cdot {x_1} + {a_{m2}} \cdot {x_2} + ... + {a_{mn}} \cdot {x_n} = {c_m} \cr} \)
Es sei m die Anzahl der linearen (unabhängigen) Gleichungen und n die Anzahl der Variablen
- m=n → das Gleichungssystem ist eindeutig lösbar
- m>n → überbestimmtes Gleichungssystem; Es gibt mehr Gleichungen als Variablen. Solch ein Gleichungssystem kann eindeutig lösbar sein
- m<n → unterbestimmtes Gleichungssystem; Es gibt weniger Gleichungen als Variablen. Solch ein Gleichungssystem ist nicht eindeutig lösbar
Grad der Variablen in einer Gleichung
Der Grad der Gleichung entspricht dem höchsten Exponenten der Variablen und er entspricht zudem der Anzahl der Lösungen.
lineare Gleichung → Grad = 1 → eine Lösung
Lineare Gleichungen in einer Variablen sind eindeutig lösbar, d.h. sie haben genau eine Lösung.
Beispiel:
\(a \cdot x + b = 0\) → \(x_1 = - \dfrac{b}{a}\)
quadratische Gleichung → Grad = 2 → zwei Lösungen
Beispiel:
\({x^2} = 9 \to {x_{1,2}} = \root 2 \of 9 = \pm 3\)
Gleichung höheren Grades → Grad >2 → mehrere Lösungen
Beispiel:
\({x^3} = 27 \to {x_{1,2,3}} = \root 3 \of {27} = 3\)
Implizite und Explizite Darstellung der Variablen in einer Gleichung
Um Gleichungen lösen zu können, d.h. jenes x zu ermitteln, welches die Gleichung zu einer wahren Aussage macht, strebt man an, dass die Variable x alleine (ohne Koeffizienten) auf einer Seite vom Gleichheitszeichen steht. Man spricht dann von der expliziten Darstellung, andernfalls von der impliziten Darstellung.
Explizite Darstellung:
Bei der expliziten Darstellung steht die Variable x alleine auf einer Seite vom Gleichheitszeichen.
Beispiel:
\(x = - \dfrac{b}{a}\)
Implizite Darstellung:
Bei der impliziten Darstellung steht die Variable x in Form eines Terms auf einer oder auf beiden Seiten vom Gleichheitszeichen. Durch Äquivalenzumformungen wird die Gleichung so lange vereinfacht, bis die Variable alleine auf einer Seite steht, also explizit gemacht wurde. Eine Äquivalenzumformung ändert die Lösung einer Gleichung nicht.
Beispiel.
\(a \cdot x + b = 0\)
Lösung einer Gleichung, bzw. eines Gleichungssystems
Bei Gleichungen mit einer oder mehreren Variablen gilt es jene Werte der Variablen aus einer gegebenen Grundmenge zu bestimmen, für die die Lösung der Gleichung eine wahre Aussage wird. Pro Variable benötigt man genau eine unabhängige Gleichung.
Beispiel:
\(1 + x = 3 \to x = 2 \to 1 + 2 = 3{\text{ wahre Aussage}}\)
Lineares Gleichungssystem mit 2 Variablen
Jede lineare Gleichung lässt sich als Gerade vom Typ \(y = k \cdot x + d\) darstellen. Da die Gleichungen linear sind, kommen nur Potenzen 1. Grades vor, also keine Quadrate oder höhere Potenzen.
Lineare Gleichungssysteme (LGS) in zwei Variablen bedeutet, dass zwei lineare Gleichungen vorliegen, die sich jeweils als Gerade darstellen lassen. Zur Lösung eines linearen Gleichungssystems mit zwei Variablen sind daher zwei Gleichungen erforderlich. Gibt es für ein lineares Gleichungssystem in zwei Variablen nur 1 Gleichung, ist das Gleichungssystem unterbestimmt, gibt es mehr als 2 Gleichungen, so ist das Gleichungssystem überbestimmt.
Ein sinnvoll lösbares LGS in zwei Variablen wird immer aus 2 Gleichungen bestehen, für die es folgende 3 Lösungsmöglichkeiten gibt: unendlich viele Lösungen, eine Lösung oder keine Lösung.
\(\matrix{ {{a_1} \cdot x} & { + {b_1}.y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2}.y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
wobei:
x, y | Variablen |
\({a_i},\,\,{b_i},\,\,{c_i}\,\, \in {\Bbb R}\) | Koeffizienten |
Grafische Lösung linearer Gleichungssysteme
Jeder der beiden linearen Gleichungen entspricht eine Gerade. Bei 2 Gleichungen liegen also 2 Geraden vor.
Da jede der beiden Geraden durch 2 Variable beschrieben wird, liegen entsprechend auch nur 2 Dimensionen x, y vor, also liegen die beiden Geraden in einer xy-Ebene, und nicht etwa im dreidimensionalen Raum. Wir müssen daher 3 Fälle unterscheiden:
- Fall 1: Zwei deckungsgleiche Gerade: Sind die Geraden ident, so gibt es unendlich viele Lösungen für das lineare Gleichungssystem.
- Fall 2: Zwei parallele Gerade: Es gibt es keinen Schnittpunkt, und somit auch keine Lösung des linearen Gleichungssystems.
- Fall 3: Zwei schneidende Gerade: Es gibt einen Schnittpunkt S, dessen Koordinaten xS, yS stellen die einzige Lösung für x, y des linearen Gleichungssystems dar.
\(\begin{array}{*{20}{c}} {I:}&{{a_1}x}& + &{{b_1}y}& = &{{c_1}}\\ {II}&{{a_2}x}& + &{{b_2}y}& = &{{c_2}} \end{array}\) | \(\begin{array}{l} {k_i} = - \dfrac{{{a_i}}}{{{b_i}}}\\ {d_i} = \dfrac{{{c_i}}}{{{b_i}}} \end{array}\) | \(\begin{array}{l} y = {k_1}x + {d_1}\\ y = {k_2}x + {d_2} \end{array}\) | |
implizite Darstellung | Umrechnung | explizite Darstellung | |
Fall 1 | \(\begin{array}{l} {a_1} \cdot C = {a_2}\\ {b_1} \cdot C = {b_2}\\ {c_1} \cdot C = {c_2} \end{array}\) | \(\begin{array}{l} {k_1} = {k_2}\\ {d_1} = {d_2} \end{array}\) | |
Fall 2 | \(\begin{array}{l} {a_1} \cdot C = {a_2}\\ {b_1} \cdot C = {b_2}\\ {c_1} \cdot C \ne {c_2} \end{array}\) | \(\begin{array}{l} {k_1} = {k_2}\\ {d_1} \ne {d_2} \end{array}\) | |
Fall 3 | \(\begin{array}{l} {a_1} \cdot C = {a_2}\\ {b_1} \cdot C \ne {b_2}\\ egal \end{array}\) | \(\begin{array}{l} {k_1} \ne {k_2}\\ egal \end{array}\) |
Eliminationsverfahren - Gleichsetzungsmethode
Beim Eliminationsverfahren bzw. Gleichsetzungsverfahren werden beide Gleichungen nach der selben Variablen (x) aufgelöst. Danach werden die erhaltenen Terme gleichgesetzt, wodurch die Variable (x) nach der explizit gemacht wurde, verschwindet und nur mehr eine Gleichung in der verbleibenden Variablen (y) überbleibt.
\(\matrix{ {{a_1} \cdot x} & { + {b_1} \cdot y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2} \cdot y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
\(\eqalign{ & {\text{Gl}}{\text{.1:}}{a_1} \cdot x + {b_1} \cdot y = {c_1} \Rightarrow x = \dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}} \cr & {\text{Gl}}{\text{.2:}}{a_2} \cdot x + {b_2} \cdot y = {c_2} \Rightarrow x = \dfrac{{{c_2} - {b_2} \cdot y}}{{{a_2}}}\cr}\)
Gleichsetzen: Gl. 1 = Gl. 2
\(\dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}} = \dfrac{{{c_2} - {b_2} \cdot y}}{{{a_2}}}\)
Substitutionsverfahren - Einsetzungsmethode
Beim Substitutionsverfahren bzw. Einsetzverfahren wird eine der Gleichungen nach einer Variablen aufgelöst, d.h. diese Variable wird explizit gemacht. Der so entstandene Term wird in die andere Gleichung eingesetzt, wodurch diese Gleichung nur mehr eine Variable enthält und lösbar wird.
\(\matrix{ {{a_1} \cdot x} & { + {b_1} \cdot y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2} \cdot y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
\({\text{Gl}}{\text{. 1: }}{a_1} \cdot x + {b_1} \cdot y = {c_1} \Rightarrow x = \dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}}\)
x aus Gl. 1 in Gl. 2 einsetzen:
\({\text{Gl}}{\text{. 2: }}{a_2} \cdot x + {b_2} \cdot y = {c_2} \Rightarrow {a_2} \cdot \dfrac{{{c_1} - {b_1} \cdot y}}{{{a_1}}} + {b_2} \cdot y = {c_2}\)
Additionsverfahren - Methode gleicher Koeffizienten
Beim Additionsverfahren bzw. beim Verfahren gleicher Koeffizienten werden durch äquivalentes Umformen die Koeffizienten einer Variablen bis auf entgegengesetzte Vorzeichen gleich gemacht. Danach werden die Gleichungen addiert, wodurch die Variable wegfällt, deren Koeffizienten man zuvor gleich gemacht hat. Was bleibt ist eine Gleichung in einer Variablen, die man dadurch löst, dass man die verbliebene Variable explizit macht.
\(\eqalign{ & Gl.1:{a_1} \cdot x + {b_1} \cdot y = {c_1}\,\,\left| {{\lambda _1}} \right. \cr & Gl.2:{a_2} \cdot x + {b_2} \cdot y = {c_2}\,\,\left| {{\lambda _2}} \right. \cr}\)
\({\lambda _1},{\lambda _2}{\text{ so wählen}}{\text{, dass }}{\lambda _1} \cdot {b_1} = \pm {\lambda _2} \cdot {b_2}\)
\(\matrix{ {Gl.1} & {{\lambda _1} \cdot {a_1}.x} & { + {\lambda _1} \cdot {b_1} \cdot y} & { = {\lambda _1} \cdot {c_1}} \cr {Gl.2} & {{\lambda _2} \cdot {a_2} \cdot x} & { + {\lambda _2} \cdot {b_2} \cdot y} & { = {\lambda _2} \cdot {c_2}} \cr {Gl.1\,\, \mp Gl.2.} & {{\lambda _1} \cdot {a_1} \cdot x} & { \mp {\lambda _2} \cdot {a_2} \cdot x} & { = {\lambda _1} \cdot {c_1} \mp {\lambda _2} \cdot {c_2}} \cr }\)
Cramersche Regel
Die cramersche Regel (Determinantenmethode) ist ein Verfahren, um Systeme von n-linearen Gleichungen mit n Variablen zu lösen bzw. um herauszufinden, dass es nicht eindeutig lösbar ist.
Rechnerische Lösung linearer Gleichungssysteme für n=2 Variable gemäß cramerscher Regel
\(\matrix{ {{a_1} \cdot x} & { + {b_1} \cdot y} & { = {c_1}} \cr {{a_2} \cdot x} & { + {b_2} \cdot y} & { = {c_2}} \cr } \left| {\matrix{ {{\rm{Gl}}{\rm{.1}}} \cr {{\rm{Gl}}{\rm{.2}}} \cr } } \right.\)
\(\eqalign{ & x = \dfrac{{{c_1}{b_2} - {c_2}{b_1}}}{{{a_1}{b_2} - {a_2}{b_1}}}; \cr & y = \dfrac{{{a_1}{c_2} - {a_2}{c_1}}}{{{a_1}{b_2} - {a_2}{b_1}}}; \cr} \)
wobei:
\(\left( {{a_1}{b_2} - {a_2}{b_1}} \right) \ne 0;\)
Rechnerische Lösung linearer Gleichungssysteme für n=3 Variable gemäß cramerscher Regel bzw. Determinantenmethode
Lösungsverfahren für lineare Gleichungssysteme, bei dem man das gegebene Gleichungssystem in Form einer Koeffizienten Matrix anschreibt und anschließend je Variable zwei Determinanten löst.
\(\eqalign{ & {a_1}.x + {b_1}.y + {c_1}.z = {d_1} \cr & {a_2}.x + {b_2}.y + {c_2}.z = {d_2} \cr & {a_3}.x + {b_3}.y + {c_3}.z = {d_3} \cr}\)
\(x = \dfrac{{{D_x}}}{D} = \dfrac{{\left| {\begin{array}{*{20}{l}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_2}}&{{b_3}}&{{c_3}} \end{array}} \right|}}{D};\)
\(y = \dfrac{{{D_y}}}{D} = \dfrac{{\left| {\begin{array}{*{20}{l}} {{a_1}}&{{d_1}}&{{c_1}}\\ {{a_2}}&{{d_2}}&{{c_2}}\\ {{a_2}}&{{d_3}}&{{c_3}} \end{array}} \right|}}{D}\)
\(z = \dfrac{{{D_z}}}{D} = \dfrac{{\left| {\begin{array}{*{20}{l}} {{a_1}}&{{b_1}}&{{d_1}}\\ {{a_2}}&{{b_2}}&{{d_2}}\\ {{a_2}}&{{b_3}}&{{d_3}} \end{array}} \right|}}{D};\)
\(D = \left| {\begin{array}{*{20}{l}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|;\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Quadratischen Gleichung mit einer Variablen
In dieser Mikro-Lerneinheit lernst du mehrere Methoden, wie man quadratische Gleichungen lösen kann. Wir werden die allgemeine quadratische Gleichung mittels der abc-Formel (große Lösungsformel) und die normierte quadratische Gleichung mittels der pq-Formel (kleine Lösungsformel) lösen. Mit Hilfe der Diskriminante erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehört.
Gleichung 2. Grades
Eine allgemeine quadratische Gleichung in einer Variablen besteht aus einem quadratischen, einem linearen und einem konstanten Glied
\(a \cdot {x^2} + b \cdot x + c = 0\)
Damit es sich auch wirklich um eine quadratische Gleichung handelt, muss a≠0 und es darf auch kein Term höherer als zur 2. Potenz vorkommen. Eventuell muss man die Null auf der rechten Seite vom Gleichheitszeichen durch Äquivalenzumformungen herbeiführen.
- Parameter a: mit zunehmenden a wird der Graph der Parabel immer steiler
- Parameter b: mit zunehmenden b verschiebt sich der Scheitelpunkt der Parabel entlang einer Geraden mit 45° Steigung vom Ursprung weg
- Parameter c: verschiebt den Graph der Parabel in Richtung der y-Achse
Lösung einer allgemeinen quadratischen Gleichung mittels abc-Formel
Die Lösung einer allgemeinen quadratischen Formel erfolgt mittels der abc-Formel. Die abc-Formel wird auch gerne "„Mitternachtsformel“
oder „große Lösungsformel“ genannt.
\(\eqalign{ & a{x^2} + bx + c = 0 \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr & D = {b^2} - 4ac \cr}\)
Man erhält 2 Lösungen, die Lösung für x1 ergibt sich, wenn man vor der Wurzel das "+" rechnet, die Lösung für x2 ergibt sich, wenn man vor der Wurzel das "-" rechnet.
Quadratische Gleichung in Normalform
Bei einer quadratischen Gleichung in Normalform ist der Koeffizient vor dem quadratischen Glied eine "1". Darüber hinaus gibt es noch ein lineares und ein konstantes Glied
\({x^2} + px + q = 0\)
Normierte quadratische Gleichung
Man kann die allgemeine quadratische Gleichung in eine quadratische Gleichung in Normalform durch Division der Gleichung durch a, also dem Koeffizienten im quadratischen Glied, wie folgt umrechnen bzw. normieren
\(\eqalign{ & a \cdot {x^2} + b \cdot x + c = 0\,\,\,\,\,\left| {:a} \right. \cr & {x^2} + \frac{b}{a} \cdot x + \frac{c}{a} = 0 \cr & {x^2} + p \cdot x + q = 0 \cr & {\text{mit}} \cr & {\text{p = }}\dfrac{b}{a};\,\,\,\,\,q = \dfrac{c}{a} \cr} \)
Lösung einer quadratischen Gleichung in Normalform mittels pq-Formel
Die Lösung einer quadratischen Gleichung in Normalform erfolgt mittels der pq Formel, auch "kleine Lösungsformel" genannt.
\(\eqalign{ & {x^2} + px + q = 0\, \cr & {x_{1,2}} = - \dfrac{p}{2} \pm \sqrt {{{\left( {\dfrac{p}{2}} \right)}^2} - q\,\,\,\,} \cr & D = {\left( {\dfrac{p}{2}} \right)^2} - q \cr}\)
Der Satz von Vieta bietet eine Möglichkeit einer Probe, denn es muss gelten:
\(\eqalign{ & {x_1} + {x_2} = - p = - \dfrac{b}{a} \cr & {x_1} \cdot {x_2} = q = \dfrac{c}{a} \cr} \)
Anmerkung: Man kann jede quadratische Gleichung mit der abc Formel lösen. Ob es eine Vereinfachung bringt eine allgemeine quadratische Gleichung mittels Division durch a auf die Normalform zuzurechnen, um dann die etwas einfachere pq-Formel nützen zu können muss man individuell entscheiden. Im Zeitalter vom Taschenrechner, wird es sich wohl nicht auszahlen.
Rein quadratische Gleichung
Bei einer rein quadratischen Gleichung gibt es nur ein quadratisches und ein konstantes, aber kein lineares Glied.
\(a \cdot {x^2} + c = 0\)
Lösung einer rein quadratischen Gleichung mittels Äquivalenzumformung
Die Lösung einer rein quadratischen Gleichung erfolgt durch Äquivalenzumformung
\(\eqalign{ & a \cdot {x^2} + c = 0 \cr & {x_{1,2}} = \pm \sqrt { - \dfrac{c}{a}} \cr & D = - \dfrac{c}{a} \cr} \)
Diskriminante
In allen drei Lösungen ist ein Wurzelausdruck enthalten. Den Wert unter dem Wurzelzeichen nennt man Diskriminante. Mit Hilfe der Diskriminanten erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehören.
Quadratische Gleichungen haben, abhängig von der Diskriminante "D" drei mögliche Lösungsfälle.
1. Fall: D > 0 à 2 Lösungen in R, die zugrunde liegende Funktion hat 2 Nullstellen. Dh der Graph der Funktion schneidet 2-Mal die x-Achse
2. Fall: D = 0 à 1 (eigentlich 2 gleiche) Lösung in R, die zugrunde liegende Funktion hat 1 doppelte Nullstelle. Dh der Graph der Funktion berührt die x-Achse. \({x_1} = {x_2} = \dfrac{{ - b}}{{2a}}{\text{ bzw}}{\text{. }}{{\text{x}}_1} = {x_2} = - \dfrac{p}{2}\)
3. Fall: D < 0 à keine Lösung in R, aber 2 konjugiert komplexe Lösungen in C. Der Graph der zugrunde liegenden Funktion berührt oder schneidet die x-Achse nicht.
Illustration vom Zusammenhang zwischen Diskriminante und Anzahl der reellen Nullstellen
Quadratische Gleichung mit komplexer Lösung
Im Bereich der komplexen Zahlen lassen sich nun auch jene quadratischen Gleichungen lösen, deren Diskriminante kleiner Null ist - d.h. deren Wert unter der Wurzel negativ ist. In diesem Fall gibt es 2 zu einander konjugiert komplexe Lösungen.
\(D < 0: \pm \sqrt { - D} = \pm \sqrt { - 1 \cdot D} = \pm \sqrt { - 1} \cdot \sqrt D = \pm i \cdot \sqrt D \)
→ Wir gehen im Kapitel über komplexe Zahlen auf das Thema näher ein.
Satz von Vieta
Der Satz von Vieta erlaubt es quadratische Gleichungen die als Polynom, also als Summe oder Differenz, gegeben sind in ein Produkt umzurechnen. Die sogenannte "faktorisierte" Darstellung hat den Vorteil, dass man die Lösungen der Gleichung, bzw. die Nullstellen der Funktion direkt ohne weiterer Rechnung ablesen kann
Satz von Vieta (Allgemeine Form)
Der Satz von Vieta für allgemeine quadratische Gleichungen mit einer Variablen macht eine Aussage über den Zusammenhang zwischen den Koeffizienten a, b und c und den Lösungen bzw. Nullstellen x1 und x2 der Gleichung
\(a{x^2} + bx + c = 0{\text{ mit: }}a,b,c \in {\Bbb R}\,\,\,\,\,a \ne 0\)
Die bekannten Koeffizienten a, b und c hängen mit den gesuchten Nullstellen wie folgt zusammen
\( - \dfrac{b}{a} = \left( {{x_1} + {x_2}} \right)\)
\(\dfrac{c}{a} = \left( {{x_1} \cdot {x_2}} \right)\)
Mit Hilfe dieser beiden Gleichungen kann man x1 und x2 einfach ausrechnen.
Satz von Vieta (Normalform)
Der Satz von Vieta für quadratischen Gleichung in Normalform mit einer Variablen macht eine Aussage über den Zusammenhang zwischen den Koeffizienten p und q und den Lösungen bzw. Nullstellen x1 und x2 der zugrunde liegenden Funktion bzw. Gleichung.
\({x^2} + px + q = 0\,\,\,\,\,\,\,p,q\, \in \,{\Bbb R}\)
Die bekannten Koeffizienten p und q hängen mit den gesuchten Nullstellen wie folgt zusammen
\( - p = \left( {{x_1} + {x_2}} \right)\)
\(q = {x_1} \cdot {x_2}\)
Mit Hilfe dieser beiden Gleichungen kann man x1 und x2 einfach ausrechnen.
Faktorisieren
Beim Faktorisieren wird eine Summe in ein Produkt aus zwei oder mehr Faktoren umgewandelt. Enthalten alle Summanden eines Summen- bzw. Differenzenterms den gemeinsamen Faktor a, so kann man diesen herausheben.
\(a \cdot b \pm a \cdot c = a \cdot \left( {b \pm c} \right)\)
Zerlegung in Linearfaktoren für Polynome zweiten Grades
Unter Verwendung der mit Hilfe vom Satz von Vieta ermittelten Nullstellen x1 und x2 kann man die quadratische Gleichung nunmehr in Linearfaktoren zerlegt anschreiben.
\(a{x^2} + bx + c = a\left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right)\)
\({x^2} + px + q = \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right)\)
Faktorisierte Darstellung einer (quadratischen) Gleichung
Bei der faktorisierten Darstellung einer Gleichung wird die Gleichung als Produkt dargestellt. Dabei sind die Nullstellen x1, x2 der zugrunde liegenden Funktion in den geklammerten Termen sofort ablesbar. Der Satz vom Nullprodukt besagt nämlich, dass ein Produkt genau dann Null ist, wenn mindestens einer der Faktoren Null ist.
\(f\left( x \right) = a \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \to L\left\{ {{x_1},{x_2}} \right\}{\text{ mit }}a \ne 0\)
Im Sonderfall einer doppelten Nullstelle sieht die Darstellung der Funktion wie folgt aus:
\(f\left( x \right) = a \cdot {\left( {x - {x_1}} \right)^2} \to L\left\{ {{x_1}} \right\}{\text{ mit }}a \ne 0\)
- Von der faktorisierten Darstellung gelangt man durch ausmultiplizieren zur allgemeinen Form.
- Von der allgemeinen Form gelangt man zur faktorisierten Form, indem man die Nullstellen der Gleichung ausrechnet und mit deren Hilfe dann die faktorisierte Form anschreibt.
Linearfaktorzerlegung für Polynome n-ten Grads
Bei der Linearfaktorzerlegung wird die Summendarstellung eines Polynoms n-ten Grades faktorisiert, also in eine Produktdarstellung umgerechnet.
\(\eqalign{ & {p_n}\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ... + {a_2}{x^2} + {a_1}x + {a_0} = \cr & = {a_n} \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cdot ... \cdot \left( {x - {x_n}} \right) \cdot {\text{Restglied}} \cr} \)
→ Der Vorteil der Darstellung von Polynomen mit Hilfe von Linearfaktoren besteht darin, dass man die Nullstellen der zugrunde liegenden Funktionen bzw. die Lösungen der zugrunde liegenden Gleichungen direkt ablesen kann.
Die Vorgehensweise bei der Linearfaktorzerlegung ist folgende:
Wenn man alle Nullstellen xi bereits kennt, kann man die Linearfaktoren direkt anschreiben.
Wenn man die Nullstellen noch nicht kennt, versucht man eine Nullstelle x1 und somit den zugehörigen Linearfaktor (x-x1) zu erraten. Anschließend dividiert man das Ausgangspolynom pn durch den Linearfaktor. Das Restpolynom pn-1 hat sich gegenüber dem Ausgangspolynom um einen Grad erniedrigt und man kennt bereits einen Linearfaktor bzw. eine Nullstelle vom Ausgangspolynom.
\(\eqalign{ & {p_n}\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ... + {a_2}{x^2} + {a_1}x + {a_0} = \cr & = \left( {x - {x_1}} \right) \cdot {p_{n - 1}}\left( x \right) \cr} \)
Nun versucht man vom Restpolynom pn-1 wieder eine Nullstelle x2 und somit den zugehörigen Linearfaktor (x-x2) zu erraten, usw. Irgendwann bleibt ein Restglied über, welches selbst keine Nullstelle besitzt.
Hornersche Regel zur Linearfaktorzerlegung
Die hornersche Regel funktioniert nur in jenen (seltenen) Spezialfällen wo die Gleichung „x hoch n“ MINUS „c hoch n“ lautet. Sie hilft dabei, den Grad vom Polynom um 1 zu reduzieren, wodurch man schon mal eine Nullstelle gefunden hat und der verbleibende Rest vom Polynom einfacher zu faktorisieren ist, um alle Nullstellen (Lösungen) zu erhalten.
\(\left( {{x^n} - {c^n}} \right) = \left( {x - c} \right) \cdot \left[ {{x^{n - 1}} \cdot 1 + {x^{n - 2}} \cdot {c^1} + {x^{n - 3}} \cdot {c^2} + ... + x \cdot {c^{n - 2}} + 1 \cdot {c^{n - 1}}} \right]\)
Horner'sches Schema zur Linearfaktorzerlegung
Beim hornerschen Schema handelt es sich um ein Umformungsverfahren um einfach die Nullstellen eines Polynoms zu finden. Dazu muss man versuchen, eine Nullstelle zu erraten.
Aufgaben
Aufgabe 64
Potenzieren von Potenzen
Vereinfache:
\(w = \left( {{{\left( {\dfrac{{ - 4ar}}{{3{b^2}s}}} \right)}^3}:{{\left( {\dfrac{{4ar}}{{12{b^3}{s^2}}}} \right)}^2}} \right) \cdot {\left( {\dfrac{{bs}}{{2ar}}} \right)^4}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 65
Quadratische Gleichung mit einer Variablen
1. Teilaufgabe: Was versteht man unter einer quadratischen Gleichung ?
2. Teilaufgabe: Was versteht man unter einer normierten quadratischen Gleichung?
3. Teilaufgabe: Dokumentiere durch ein Beispiel, wie man eine quadratische Gleichung, in eine normierte quadratische Gleichung überführen kann.
Aufgabe 66
Welche 3 Lösungsfälle können bei quadratischen Gleichungen auftreten? Unterscheide an Hand der Diskriminante!
Aufgabe 67
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\(a{x^2} + bx + c = 0;\,\,\,\,\,a{\text{, b}}{\text{, c }} \in {\Bbb R}\,\,\,\,\,a \ne 0\)
Zeige an Hand des Beispiels a=4 und b=12 für den Spezialfall c=0, wie man Gleichungen vom Typ \(a{x^2} + bx = 0\) lösen kann.
Aufgabe 68
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\(a{x^2} + bx + c = 0;{\text{ a}}{\text{, b}}{\text{, c }} \in {\Bbb R}\,\,\,\,\,a \ne 0\)
Zeige an Hand des Beispiels a=4 und c= -100 für den Spezialfall b=0, wie man Gleichungen vom Typ \(a{x^2} + c = 0\) lösen kann.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 69
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung
\({x^2} = k\)
Für welche k hat diese Gleichung eine, zwei bzw. keine Lösung in R?
Aufgabe 70
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
Berechne:
\({\left( {x - 3} \right)^2} = 25\)
Aufgabe 71
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\({x^2} + 4x + 2 = 14\)
Berechne x1,2 mittels der Methode eines vollständigen Quadrats.
Aufgabe 72
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\({x^2} - 6x = - 5\)
Berechne x1,2 mittels der Methode eines vollständigen Quadrats.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 73
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
Berechne:
\({x^2} - 6x + 6 = 0\)
Aufgabe 74
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
Berechne:
\({x^2} - 6x + 9 = 0\)
Aufgabe 75
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
Berechne:
\({x^2} - 6x + 12 = 0\)