Linearer Mittelwert m einer Funktion f im Intervall [a; b]
Hier findest du folgende Inhalte
Formeln
Bestimmtes Integral - Bogenlänge
Das bestimmte Integral ermöglicht es, die Bogenlänge von einem Graphen zu berechnen, der durch eine Funktionsgleichung gegeben ist.
Bestimmtes Integral - Bogenlänge einer ebenen Kurve
Es sei f(x) eine im Intervall [a,b] differenzierbare, also eine stetige Funktion. Dann ist s Bogenlänge der ebenen Kurve. Eine Kurve heißt rektifizierbar, wenn sie eine endliche Bogenlänge s hat.
\(s = \int\limits_a^b {\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} \,\,dx}\)
Linearer Mittelwert m einer Funktion f im Intervall [a; b]
Neben der Bogenlänge der Funktion f(x) im Intervall [a; b] kann man sich auch für den mittleren Abstand des Bogens von der x-Achse innerhalb dieses Intervalls interessieren. Ein Beispiel wäre die mittlere Flughöhe eines Balls beim Schuss vom Elfmeterpunkt in Richtung vom Tor.
\(m = \dfrac{1}{{b - a}} \cdot \int\limits_a^b {f\left( x \right)} \,\,dx\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!

Aufgaben
Aufgabe 4438
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Olympische Sommerspiele 2008 in Peking - Aufgabe B_508
Teil a
Bei den Olympischen Sommerspielen 2008 in Peking siegte Usain Bolt im Finale des 100-Meter-Laufes der Männer. Die Silbermedaille ging an Richard Thompson. Die jeweilige Geschwindigkeit der beiden Läufer bei diesem Lauf kann durch die nachstehenden Funktionen modellhaft beschrieben werden.
\(\begin{gathered} {v_B}\left( t \right) = 12,151 \cdot \left( {1 - {e^{ - 0,684 \cdot t}}} \right) \hfill \\ {v_T}\left( t \right) = 12,15 \cdot \left( {1 - {e^{ - 0,601 \cdot t}}} \right) \hfill \\ \end{gathered} \)
t |
Zeit ab dem Start in s |
vB(t) |
Geschwindigkeit von Usain Bolt zur Zeit t in m/s |
vT(t) |
Geschwindigkeit von Richard Thompson zur Zeit t in m/s |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Beschleunigung von Usain Bolt 1 s nach dem Start.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, was mit dem nachstehenden Ausdruck im gegebenen Sachzusammenhang berechnet wird.
\(\dfrac{1}{{8 - 5}} \cdot \int\limits_5^8 {{v_B}\left( t \right)} \,\,dt\)
Usain Bolt überquerte die Ziellinie 9,69 s nach dem Start.
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, wie weit Richard Thompson von der Ziellinie entfernt war, als Usain Bolt diese überquerte.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!

Aufgabe 4500
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Attersee - Aufgabe B_524
Teil a
Der zeitliche Verlauf der Temperatur des Attersees kann modellhaft durch die Funktion f beschrieben werden (siehe nachstehende Abbildung).
\(f\left( t \right) = a \cdot \sin \left( {b \cdot t - \dfrac{{2 \cdot \pi }}{3}} \right) + c{\text{ mit }}0 \leqslant t \leqslant 360\)
t | Zeit in Tagen |
f(t) | Temperatur zur Zeit t in °C |
a,b,c | Parameter |
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der obigen Abbildung den Parameter b.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Größen jeweils den zutreffenden Zahlenwert aus A bis D zu.
[0 / 1 P.]
- Größe 1: Amplitude von f
- Größe 2: linearer Mittelwert (Integralmittelwert) von f im Intervall [30; 210]
- Zahlenwert 1: 10
- Zahlenwert 2: 12
- Zahlenwert 3: 13
- Zahlenwert 4: 23
Zur Zeit t = 120 betrug die tatsächlich gemessene Temperatur 12 °C.
3. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie den Betrag des absoluten Fehlers an, der entsteht, wenn man statt der tatsächlich gemessenen Temperatur den Funktionswert an der Stelle t = 120 verwendet.
[0 / 1 P.]
Zur Überprüfung der Qualität der Modellfunktion f werden 1 000 Messwerte yider Temperatur zu verschiedenen Zeiten tierhoben. Für jeden dieser Messpunkte (ti| yi) wird die Differenz des Messwerts yizum Funktionswert f(ti) ermittelt. Diese Differenzen werden jeweils quadriert und danach aufsummiert. Die so erhaltene Summe wird mit s bezeichnet.
4. Teilaufgabe - Bearbeitungszeit 05:40
Vervollständigen Sie die nachstehende Formel zur Berechnung von s.
\(s = \sum\limits_{i = 1}^{1000} {???} \)
[0 / 1 P.]