Kostenfunktion
Hier findest du folgende Inhalte
Formeln
Kosten- und Preistheorie
In der Kosten- und Preistheorie versucht man Kosten, Preise sowie Erlöse und Gewinne durch einfache mathematische Funktionen zu modellieren. Es handelt sich dabei um ein Teilgebiet der Mikroökonomie, welches die Preisbildung als Folge des Aufeinandertreffens von Angebot und Nachfrage auf verschiedenen Märkten untersucht.
Die wichtigsten Funktionen sind die
\(K\left( x \right) = {K_{fix}} + {K_{{\mathop{\rm var}} }}\left( x \right)\) | Kostenfunktion, beschreibt die gesamten Kosten als Summe der Fixkosten und der variablen Kosten in Abhängigkeit von der Produktionsmenge |
\(P\left( x \right) = \dfrac{{E\left( x \right)}}{x}\) | Preisfunktion, beschreibt den erzielbaren Preis pro Stück |
\(E\left( x \right) = P\left( x \right) \cdot x\) | Erlösfunktion, beschreibt den Erlös pro Stück |
\(G\left( x \right) = E\left( x \right) - K\left( x \right)\) | Gewinnfunktion, beschreibt den Gewinn als Differenz von Erlös und Gesamtkosten |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Kostenfunktion
Die Kostenfunktion, auch Gesamtkostenfunktion genannt, beschreibt den Zusammenhang zwischen der produzierten Menge und den gesamten dafür anfallenden Kosten. Sie gibt also an, wie viel es in Summe kostet x-Stück zu produzieren. Die Gesamtkosten setzen sich aus den Fixkosten und den variablen Kosten zusammen.
\(K\left( x \right) = {K_f} + {K_v}\left( x \right)\)
Fixkosten
Fixkosten sind Kosten die auch dann anfallen, wenn nicht produziert wird. Sie sind von der Höhe der Erzeugung unabhängig. \({K_{fix}} = K\left( 0 \right) > 0\)
Variable Kosten
Variable Kosten sind Kosten, die von der produzierten Mengeneinheit abhängen. \(K'\left( x \right) > 0\) daraus folgert, dass die Kosten streng monoton steigen.
Deckungsbeitrag
Der Deckungsbeitrag sind jene Einnahmen, die nach Abzug der variablen Kosten von den Verkaufsnettoerlösen übrig bleiben. Der Deckungsbeitrag gibt an, wie viel ein verkauftes Stück zur Deckung der Fixkosten beiträgt. Ist der Deckungsbeitrag negativ, dann verliert das Unternehmen Geld bei jedem zusätzlich verkauften Stück.
\(D\left( x \right) = E\left( x \right) - {K_v}\left( x \right)\)
Der Deckungsbeitrag ist der Beitrag der Erlöse zur Deckung der Fixkosten. Der Deckungsbeitrag ist Null, wenn man durch die Erlöse nur mehr die variablen Kosten decken kann, aber kein Beitrag zur Deckung der Fixkosten übrigbleibt. Erwirtschaftet ein Geschäft keinen Deckungsbeitrag, macht es wirtschaftlich keinen ursächlichen Sinn mehr, das Geschäft weiter zu betreiben.
Ausgaben
Ausgaben sind Abgänge an Zahlungsmittel in einer Abrechnungsperiode. Ein Gut welches ins Lager kommt, verursacht Ausgaben, aber keine Aufwendungen.
Aufwendungen
Aufwendungen sind der Geldwert aller verbrauchten Güter und der in Anspruch genommener Dienstleistungen in einer Abrechnungsperiode. Ein Gut, welches aus dem Lager genommen und verbraucht wird, ist eine Aufwendung, aber keine Ausgabe.
Kosten
Kosten sind Aufwendungen, die auf den eigentlichen Betriebszweck bezogen in der betrachteten Periode anfallen und nicht außerordentlich sind. Unternehmerlohn, Abschreibungen oder Mieten stellen zwar (kalkulatorische) Kosten, aber keine Aufwendungen dar.
Lineare Kostenfunktion
Die einfachste Modellierung ist jene mit einer linearen Kostenfunktion. Die lineare Kostenfunktion ist streng monoton steigend und hat keine Extremstellen.
\(K\left( x \right) = kx + d\)
- Fixkosten einer linearen Kostenfunktion: \( K_f=K\left( 0 \right)=d\)
- variable Kosten einer linearen Kostenfunktion: \(K_v\left( x \right) = K\left( x \right) - K\left( 0 \right) = \left( {kx + d} \right) - \left( d \right) = kx\)
Illustration zur Veranschaulichung der linearen Kostenfunktion
Stückkosten einer linearen Kostenfunktion
Die Stückkosten sind die Produktionskosten einer Mengeneinheit. Man unterscheidet zwischen den
- durchschnittlichen Stückkosten, sinken bei höherer Produktion
- marginalen Stückkosten, konstant weil unabhängig von der Höhe der Produktion
Durchschnittliche Stückkosten
Die durchschnittlichen Stückkosten geben die Kosten für die Produktion von einer beliebigen Mengeneinheit an. Auch wenn die Kostenfunktion K(x) selbst linear ist, handelt es sich bei den durchschnittlichen Stückkosten \(\overline K (x) = \dfrac{{{K_v}\left( x \right)}}{x} + \dfrac{{{K_F}}}{x}\) um keine lineare Funktion, weil der Anteil der Fixkosten d mit der wachsenden Mengen x gemäß \(\dfrac{d}{x}\) immer kleiner wird.
\(\overline K \left( x \right) = \dfrac{{K\left( x \right)}}{x} = \dfrac{{k \cdot x + d}}{x} = k + \dfrac{d}{x}\)
Marginale Stückkosten (Grenzkosten) einer linearen Kostenfunktion
Die marginalen Stückkosten geben die Mehrkosten für eine zusätzliche Mengeneinheit an. Die Grenzkosten sagen, um wie viel sich die Kosten erhöhen, wenn man noch zusätzlich eine (unendlich kleine ≠ 1 Stk) Mengeneinheit produziert, unabhängig davon wie viel man bereits produziert hat.
\(K\left( {x + 1} \right) - K\left( x \right) = \left[ {k \cdot \left( {x + 1} \right) + d} \right] - \left[ {\left( {kx + d} \right)} \right] = k\)
In der Praxis ist der Verlauf der marginalen Kosten meist nicht konstant. Man erhält die Grenzkostenfunktion K' auf jeden Fall durch einmaliges Ableiten der Gesamtkostenfunktion K(x). Dabei fallen die Fixkosten weg, da sie unabhängig von der Stückzahl sind, und Konstante beim Ableiten wegfallen.
\(K'\left( x \right) = \dfrac{{dK\left( x \right)}}{{{\mathop{\rm dx}\nolimits} }} = {\left( {k \cdot x + d} \right)^\prime } = k\)
Illustration zur Veranschaulichung der Zusammenhänge
Ertragsgesetzliche Kostenfunktion
In der Praxis verläuft die Kostenfunktion gemäß einer Funktion 3. Grades. Die ertragsgesetzliche Kostenfunktion ist streng monoton steigend, hat keine Extremstellen aber einen Wendepunkt, den man Kostenkehre nennt.
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
Für die Koeffizienten einer ertragsgesetzlichen Kostenfunktion gilt (ohne Herleitung)
- \(a > 0\) weil für \(x \to \infty \) strebt \(K\left( x \right) \to \infty \)
- \(b < 0\) genauer: \(b = - 3a \cdot {x_{KK}}\)
- \(c \ge 0\) bzw. \(c \ge {b^2} - 3a\)
- \(d \ge 0\) Dies entspricht den Fixkosten und diese sind zumindest Null oder höher. d hat keinen Einfluss auf den Verlauf vom Graph der Funktion, sondern verschiebt diesen nur entlang der y-Achse.
- \({x_{kk}} = - \dfrac{b}{{3a}}\) muss für die produzierte Menge an der Kostenkehre gelten
Degressiver Kostenverlauf
Bis zum Wendepunkt der Kostenfunktion (Kostenkehre) verläuft diese degressiv (Wegfall von Stillstandszeiten, Output steigt bei zunehmenden Arbeitseinsatz … ). Degressiv = negativ, rechts bzw. konvex gekrümmt.
\(K''\left( x \right) < 0\): Erhöht sich die Stückzahl um n%, so stiegen die Kosten um weniger als n%.
Progressiver Kostenverlauf
Ab dem Wendepunkt der Kostenfunktion (Kostenkehre) verläuft diese progressiv (zu viele Arbeitskräfte behindern sich gegenseitig, Mangel an Facharbeitern, es wird zunehmend teurer, eine Mengeneinheit zu produzieren)
\(K''\left( x \right) > 0\): Erhöht sich die Stückzahl um n%, so stiegen die Kosten um mehr als n%.
In der betrieblichen Praxis kennt man die Kostenfunktion mitunter nicht. Aus der innerbetrieblichen Kostenrechnung kann man aber
- für bestimmte Produktionsmengen die zugehörigen Gesamtkosten erhalten
- diese in eine Punktwolke einzeichnen um dann
- mit Hilfe der Methode der kleinsten Quadrate
die ertragsgesetzliche Kostenfunktion bilden.
Illustration zur Veranschaulichung der ertragsgesetzlichen Kostenfunktion
- Das Betriebsminimum wird als Tangente aus dem Punkt (0|Fixkosten) an die ertragsgesetzliche Kostenfunktion konstruiert. Das Betriebsminimum liegt dort wo die variablen Durchschnittskosten ihr Minimum haben.
- Das Betriebsoptimum wird als Tangente aus dem Punkt (0|0) an die ertragsgesetzliche Kostenfunktion konstruiert. Das Betriebsoptimum liegt dort, wo die Durchschnittskostenfunktion ihr Minimum hat.
Marginale Stückkosten (Grenzkosten) einer ertragsgesetzlichen Kostenfunktion
Man erhält die Grenzkostenfunktion K' durch einmaliges Ableiten der Gesamtkostenfunktion K(x).
\(\eqalign{ & K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d{\text{ mit }}a > 0;\,\,d > 0; \cr & K'\left( x \right) = 3 \cdot a \cdot {x^2} + 2 \cdot b \cdot x + c \cr} \)
Dabei fallen die Fixkosten Kf (Parameter d) weg, da sie unabhängig von der Stückzahl sind, und Konstante beim Ableiten wegfallen.
Kennt man die Grenzkostenfunktion und die Fixkosten, so kann man die ertragsgesetzliche Kostenfunktion wie folgt anschreiben:
\(K\left( x \right) = {K_v} + {K_f} = \int {K'\left( x \right)} \,\,dx + {K_f}\)
Dort wo die ertragsgesetzliche Kostenfunktion K ihren Wendepunkt hat (Kostenkehre) dort hat die u-förmig verlaufende Grenzkostenfunktion ihr Minimum. Die Grenzkostenfunktion K' muss im ganzen Definitionsbereich positiv sein.
Illustration zur Veranschaulichung der kurz- bzw. langfristigen Preisuntergrenze bei einer ertragsgesetzlichen Kostenfunktion
- Die kurzfristige Preisuntergrenze, das sind Kosten pro Stück, liegt dort wo die variable Durchschnittskostenfunktion ihr Minimum hat.
- Die langfristige Preisuntergrenze, das sind Kosten pro Stück, liegt dort, wo die Durchschnittskostenfunktion ihr Minimum hat.
Kostenkehre
Die Kostenkehre ist der Wendepunkt der ertragsgesetzlichen Kostenfunktion K(x) (an der Stelle xKK), bzw. der Tiefpunkt der Grenzkostenfunktion K'(x)
Betriebsoptimum
Das Betriebsoptimum ist zugleich die langfristige Preisuntergrenze. Es liegt bei jener Produktionsmenge x, bei der die Stückkosten minimal sind bzw die Durchschnittskostenfunktion \(\overline K (x) = \dfrac{{{K_v}\left( x \right)}}{x} + \dfrac{{{K_F}}}{x}\) ihr Minimum hat. Konstruiert wird das Betriebsoptimum als Tangente aus (0|0) an die ertragsgesetzliche Kostenfunktion. Das Betriebsoptimum errechnet sich durch Nullsetzen der 1. Ableitung der Stückkostenfunktion. Es ist das Minimum der durchschnittlichen Kosten. Das Betriebsoptimum ist in der Regel nicht ident mit dem Gewinnmaximum.
\(\begin{array}{l} \overline K \left( x \right) = \dfrac{{K\left( x \right)}}{x}\\ {\overline K ^\prime }\left( {{x_{opt}}} \right) = 0 \end{array}\)
Langfristige Preisuntergrenze
Die langfristige Preisuntergrenze liegt dort wo die Stückkosten minimal sind. Es handelt sich dabei um das Betriebsoptimum xopt . Verkauft ein Unternehmen zu einem Preis, welcher den Stückkosten im Betriebsoptimum entspricht, so deckt es seine Fixkosten und seine variablen Kosten. Wird ein höherer Preis als die langfristige Preisuntergrenze erwirtschaftet, so macht das Unternehmen Gewinn.
Betriebsminimum
Das Betriebsminimum ist zugleich die kurzfristige Preisuntergrenze. Das Betriebsminimum liegt bei jener Produktionsmenge x, bei der die variablen Durchschnittskosten \(\overline {{K_v}} = \dfrac{{{K_v}\left( x \right)}}{x}\) minimal sind. Konstruiert wird das Betriebsminimum als Tangente aus (0|Fixkosten) bzw. (0|d) an die ertragsgesetzliche Kostenfunktion. Rechnerisch bestimmt man xmin durch Ableiten und Nullsetzen des variablen Anteils von der Stückkostenfunktion.
\(\begin{array}{l} \overline {{K_v}} \left( x \right) = \dfrac{{{K_v}\left( x \right)}}{x}\\ {\overline {{K_v}} ^\prime }\left( {{x_{\min }}} \right) = 0 \end{array}\)
Kurzfristige (absolute) Preisuntergrenze
Die kurzfristige Preisuntergrenze entspricht den Stückkosten im Betriebsminimum xmin . Sie liegt dort wo die variablen Durchschnittskosten \(\overline {{K_v}} = \dfrac{{{K_v}\left( x \right)}}{x}\) ihr Minimum haben. Verkauft ein Unternehmen zu einem Preis, welcher den Stückkosten im Betriebsminimum entspricht, so deckt es seine Fixkosten nicht und das Unternehmen macht Verluste. Die Verluste sind gleich hoch, als ob das Unternehmen gar nichts produzieren würde. Das macht nur Sinn, um kurzfristig Marktanteile zu halten. Wird hingegen ein höherer Preis als die kurzfristige Preisuntergrenze erwirtschaftet, so entsteht ein Deckungsbeitrag für die Fixkosten.
Die nachfolgende Illustration veranschaulicht diese Zusammenhänge
Gewinnfunktion
Der Gewinn ist die Differenz zwischen Erlösen und Kosten. Der Gewinn ist bei kleinen Stückzahlen zunächst negativ, wird beim Erreichen der Gewinnschwelle positiv und wird bei einer großen Stückzahl ab der Gewinngrenze wieder negativ.
\(G\left( x \right) = E\left( x \right) - K\left( x \right)\)
Grenzgewinn
Der Grenzgewinn ist jener Gewinn, der für eine zusätzliche, marginal kleine (dx), abgesetzte Produktmenge erzielt werden kann.
\(G'\left( x \right) = \dfrac{{dG\left( x \right)}}{{\operatorname{dx} }}\)
Break-Even-Point, Gewinnschwelle
Als Break-Even-Point, auch Gewinnschwelle genannt, bezeichnet man jenen Punkt an dem Kosten und Erträge gleich hoch sind. Erzielt ein Unternehmen einen höheren Ertrag liegt es in der Gewinnzone, bei einem niedrigeren Ertrag macht es Verluste.
\(\eqalign{ & G\left( x \right) = 0 \cr & E\left( x \right) = K\left( x \right) \cr} \)
Den Break-Even-Point ermittelt man, in dem man:
- die 1. Nullstelle der Gewinnfunktion ermittelt.
- als den 1. Schnittpunkt aus Erlös- und Kostenfunktion
Zur Ermittlung vom Break-Even-Point muss man
- die Fixkosten, die variablen Kosten und den Deckungsbeitrag kennen. Dividiert man die Fixkosten durch den Deckungsbeitrag erhält man die Mindestumsatzmenge.
\(\eqalign{ & x \cdot p = x \cdot {K_v} + {K_f} \cr & x = \dfrac{{{K_f}}}{{p - {K_v}}} = \dfrac{{{K_f}}}{{DB}} \cr} \)
Gewinnzone
Die Gewinnzone erhält man, wenn man G(x)=0 setzt.
- 1. Nullstelle der Gewinnfunktion: Gewinnschwelle bzw. Break-Even-Point: Erstmals wird ein positiver Gewinn wird erzielt, sobald der Erlös die Gesamtkosten übersteigt. Die Gewinnschwelle liegt im 1. Schnittpunkt von Erlös- und Kostenfunktion
- Hochpunkt der Gewinnfunktion: Gewinnmaximum Gmax: Das Gewinnmaximum wird bei jener Produktionsmenge erreicht, bei der der Hochpunkt der Gewinnfunktion liegt. Mathematisch ist das jene Stelle an der die 1. Ableitung der Gewinnfunktion ihre Nullstelle hat.
- 2. Nullstelle der Gewinnfunktion: Gewinngrenze : Bei großen Produktionsmengen steigen die Kosten überproportional an und übertreffen die Erlöse, wodurch aus dem Gewinn ein Verlust wird. Dies ist bedingt durch den s-förmigen Verlauf der ertragsgesetzlichen Kostenfunktion. Die Gewinngrenze liegt im 2. Schnittpunkt von Erlös- und Kostenfunktion.
Illustration der Gewinnzone
Cournot’scher Punkt
Der Cournot’sche Punkt ist jener Punkt auf der Gewinn-Funktion bei dem sich das Gewinnmaximum befindet. Die Gewinnfunktion ergibt sich als die Differenz von der Erlös- und der Kostenfunktion
\(G\left( x \right) = E\left( x \right) - K\left( x \right)\)
Man bestimmt daher die Nullstelle der 1. Ableitung der Gewinnfunktion.
- x-Koordinate: Jene Produktionsmenge, bei der das Gewinnmaximum liegt
- y-Koordinate: Preis bei gewinnmaximaler Produktionsmenge
Anmerkung: Ein Unternehmen im Wettbewerb hat auf den Preis keinen Einfluss, es muss den Gleichgewichtspreis (Angebot und Nachfrage) als gegeben akzeptieren. Für einen Monopolisten ist der Cournot'sche Punkt jene Preis-Mengen Kombination für die der Gewinn maximal ist.
Gewinnmaximum eines Monopolisten
Der Gewinn eines Monopolisten hat bei einer linearen Preis-Absatzfunktion dann sein Maximum, wenn er die halbe Sättigungsmenge zum halben Prohibitivpreis anbietet.
\(C\left( {\dfrac{{{x_C}}}{{p\left( {{x_C}} \right)}}} \right){\text{ sodass }}G\left( x \right) = \max \)
Im Cournot’schen Punkt sind Grenzkosten und Grenzerlöse gleich.
\(K'\left( x \right) = E'\left( x \right)\)
Aufgaben
Aufgabe 233
Kosten- und Preistheorie
Die nicht-lineare Kostenfunktion in € eines Betriebs lautet:
\(K\left( x \right) = 3{x^2} + 50x + 4800\)
Ermittle
- 1. Teilaufgabe: die Stückkostenfunktion k(x)
- 2. Teilaufgabe: die Grenzkostenfunktion K‘(x)
- 3. Teilaufgabe: das Betriebsoptimum k‘(0)
- 4. Teilaufgabe: die minimalen Stückkosten
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1302
AHS - 1_302 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Kostenfunktion
Ein Betrieb hat monatliche Fixkosten von € 3.600. Die zusätzlichen (variablen) Kosten, die pro Stück einer Ware für die Produktion anfallen, betragen € 85.
Aufgabenstellung:
Stellen Sie eine Gleichung einer linearen Kostenfunktion K auf, die die monatlichen Produktionskosten K(x) für x produzierte Stück dieser Ware modelliert!
Aufgabe 1535
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkt
Die Funktion E gibt den Erlös E(x) und die Funktion K die Kosten K(x) jeweils in Euro bezogen auf die Produktionsmenge x an. Die Produktionsmenge x wird in Mengeneinheiten (ME) angegeben. Im folgenden Koordinatensystem sind die Graphen beider Funktionen dargestellt:
Aufgabenstellung:
Interpretieren Sie die beiden Koordinaten des Schnittpunkts S der beiden Funktionsgraphen im gegebenen Zusammenhang!
Aufgabe 1390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wasserkosten
Die monatlichen Wasserkosten eines Haushalts bei einem Verbrauch von x m3 Wasser können durch eine Funktion K mit der Gleichung \(K\left( x \right) = a + b \cdot x\) mit a, b ∈ ℝ+ beschrieben werden.
Aufgabenstellung:
Erklären Sie, welche Bedeutung die Parameter a und b in diesem Zusammenhang haben!
Aufgabe 1486
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosten, Erlös und Gewinn
Die Funktion E beschreibt den Erlös (in €) beim Absatz von x Mengeneinheiten eines Produkts. Die Funktion G beschreibt den dabei erzielten Gewinn in €. Dieser ist definiert als Differenz „Erlös – Kosten“.
Aufgabenstellung:
Ergänzen Sie die nachstehende Abbildung durch den Graphen der zugehörigen Kostenfunktion K! Nehmen Sie dabei K als linear an! (Die Lösung der Aufgabe beruht auf der Annahme, dass alle produzierten Mengeneinheiten des Produkts verkauft werden.)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1248
AHS - 1_248 & Lehrstoff: FA 1.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosten- und Erlösfunktion
Die Herstellungskosten eines Produkts können annähernd durch eine lineare Funktion K mit \(K\left( x \right) = 392 + 30x\) beschrieben werden. Beim Verkauf dieses Produkts wird ein Erlös erzielt, der annähernd durch die quadratische Funktion E mit \(E\left( x \right) = - 2 \cdot {x^2} + 100x\) angegeben werden kann. x gibt die Anzahl der produzierten und verkauften Einheiten des Produkts an.
Aufgabenstellung
Ermitteln Sie die x-Koordinaten der Schnittpunkte dieser Funktionsgraphen und interpretieren Sie diese im gegebenen Zusammenhang!
Aufgabe 1412
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Produktionskosten
Ein Betrieb gibt für die Abschätzung der Gesamtkosten K(x) für x produzierte Stück einer Ware folgende Gleichung an: \(K\left( x \right) = 25 \cdot x + 12000\)
Aufgabenstellung:
Interpretieren Sie die beiden Zahlenwerte 25 und 12.000 in diesem Kontext!
Aufgabe 1764
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kostenfunktion
Die Gesamtkosten, die bei der Herstellung eines Produkts anfallen, können mithilfe einer differenzierbaren Kostenfunktion K modelliert werden. Dabei ordnet K der Produktionsmenge x die Kosten K(x) zu (x in Mengeneinheiten (ME), K(x) in Geldeinheiten (GE)).
Für eine Kostenfunktion \(K:\left[ {0;{x_2}} \right] \to {\Bbb R}{\text{ und }}{x_1}{\text{ mit 0 < }}{{\text{x}}_1} < {x_2}\) gelten nachstehende Bedingungen:
- K ist im Intervall [0; x2] streng monoton steigend.
- Die Fixkosten betragen 10 GE.
- Die Kostenfunktion hat im Intervall [0; x1) einen degressiven Verlauf, d. h., die Kosten steigen bei zunehmender Produktionsmenge immer schwacher.
- Bei der Produktionsmenge x1 liegt die Kostenkehre. Die Kostenkehre von K ist diejenige Stelle, ab der die Kosten immer starker steigen.
Aufgabenstellung
Skizzieren Sie im nachstehenden Koordinatensystem den Verlauf des Graphen einer solchen Kostenfunktion K.
Aufgabe 1860
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trikots
Ein Unternehmen produziert und verkauft Trikots. Die lineare Funktion K beschreibt die Kosten K(x) in Euro in Abhängigkeit von der produzierten Stückzahl x. Die lineare Funktion E beschreibt den Erlös E(x) in Euro in Abhängigkeit von der verkauften Stückzahl x.
In der nachstehenden Abbildung sind der Graph der Funktion K und der Graph der Funktion E dargestellt.
Der Schnittpunkt von K und E hat die Koordinaten (200 | 12 000) und es gilt: K(0) = 6 000.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an.
[2 aus 5]
[0 / 1 P.]
- Aussage 1: Der Verkaufspreis eines Trikots beträgt € 60.
- Aussage 2: Die Produktion eines Trikots kostet € 25.
- Aussage 3: Wenn das Unternehmen 400 Trikots produziert und verkauft, wird ein Gewinn von € 6.000 erzielt.
- Aussage 4: Bei der Produktion fallen keine Fixkosten an.
- Aussage 5: Wenn das Unternehmen weniger als 200 Trikots produziert und verkauft, wird ein Gewinn erzielt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4106
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil b
Die Grenzkostenfunktion K′ für die Herstellung von Kunststoffrohren ist gegeben durch:
\(K'\left( x \right) = \dfrac{{15}}{{32}} \cdot {x^2} - \dfrac{{35}}{4} \cdot x + 60\)
x | produzierte Menge in ME |
K'(x) |
Grenzkosten bei der produzierten Menge x in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K mit K(16) = 600.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kostenkehre.
[1 Punkt
Aufgabe 4178
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Pauliberg - Aufgabe A_067
Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.
Teil c
Unweit des Paulibergs liegt die Burgruine Landsee. Diese kann für private Veranstaltungen gemietet werden. Die Raummiete für eine Veranstaltung beträgt € 450. Zusätzlich sind pro teilnehmender Person € 1,50 zu bezahlen.
Die Gesamtkosten (in €) sollen in Abhängigkeit von der Anzahl der teilnehmenden Personen x durch eine lineare Kostenfunktion K beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Funktionsgleichung von K.
[1 Punkt]
Der Vermieter schlägt eine neue Preisgestaltung vor. Zur Veranschaulichung wurde das folgende Diagramm erstellt:
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, ab welcher Anzahl an teilnehmenden Personen die Gesamtkosten mit der neuen Preisgestaltung höher als bisher sind.
[1 Punkt]
Aufgabe 4453
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Möbel - Aufgabe B_513
Teil b
In der nachstehenden Abbildung ist der Graph der Kostenfunktion K1 eines Betriebs bei der Produktion von Kleiderschränken dargestellt.
x |
Produktionsmenge in Stück |
K1(x) |
Gesamtkosten bei der Produktionsmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie das größtmögliche Produktionsintervall ab, in dem der Verlauf der Kostenfunktion K1 degressiv ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der obigen Abbildung die Stückkosten bei einer Produktion von 200 Stück.
[0 / 1 P.]
Die Fixkosten können um 10 % reduziert werden.
3. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum sich die Grenzkostenfunktion dadurch nicht ändert.
[0 / 1 P.]