Headerbar Werbung für Region "nicht-DACH"
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 2.3
Aufgaben zum Inhaltsbereich AG 2.3: Quadratische Gleichungen in einer Variablen umformen/lösen, über Lösungsfälle Bescheid wissen, Lösungen und Lösungsfälle (auch geometrisch) deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.3
(Un-)Gleichungen und Gleichungssysteme
AG 2.3: Quadratische Gleichungen in einer Variablen umformen/lösen, über Lösungsfälle Bescheid wissen, Lösungen und Lösungsfälle (auch geometrisch) deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgaben
Aufgabe 1002
AHS - 1_002 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung 3. Grades
Gegeben ist die Gleichung \(4x \cdot \left( {{x^2} - 2x - 15} \right) = 0\)
Aufgabenstellung:
Geben Sie die Lösungen dieser Gleichung an!
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1016
AHS - 1_016 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Benzinverbrauch
Der Zusammenhang zwischen dem Benzinverbrauch y (in l/100 km) und der Geschwindigkeit x (in km/h) kann für einen bestimmten Autotyp durch die Funktionsgleichung \(y = 0,0005 \cdot {x^2} - 0,09 \cdot x + 10\) beschrieben werden.
Aufgabenstellung:
Ermitteln Sie rechnerisch, bei welcher Geschwindigkeit der Verbrauch 6 l/100 km beträgt!
Aufgabe 1054
AHS - 1_054 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist eine quadratische Gleichung der Form \({x^2} + px + q = 0{\text{ mit }}p,\,\,\,q \in \mathbb{R}\)
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die quadratische Gleichung hat jedenfalls für x __________1________ in \(\mathbb{R}\), wenn ______2________ gilt.
1 | |
keine Lösung | A |
genau eine Lösung | B |
zwei Lösungen | C |
2 | |
\(p \ne 0{\text{ und }}q < 0\) | I |
\(p = q\) | II |
\(p < 0{\text{ und }}q > 0\) | III |
Aufgabe 1055
AHS - 1_055 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösung einer quadratischen Gleichung
Gegeben ist die Gleichung \({\left( {x - 3} \right)^2} = a\)
Aufgabenstellung:
Ermitteln Sie jene Werte a ∈ ℝ, für die die gegebene Gleichung keine reelle Lösung hat!
Aufgabe 1087
AHS - 1_087 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grafische Lösung einer quadratischen Gleichung
Der Graph der Polynomfunktion f mit \(f\left( x \right) = {x^2} + px + q\) berührt die x-Achse. Welcher Zusammenhang besteht dann zwischen den Parametern p und q?
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Es gibt in diesem Fall _____________1_________ mit der x-Achse, deshalb gilt ______________2_____________ .
1 | |
keinen Schnittpunkt | A |
einen Schnittpunkt | B |
zwei Schnittpunkte | C |
2 | |
\(\dfrac{{{p^2}}}{4} = q\) | I |
\(\dfrac{{{p^2}}}{4} < q\) | II |
\(\dfrac{{{p^2}}}{4} > q\) | III |
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1161
AHS - 1_161 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichungen
Quadratische Gleichungen können in der Menge der reellen Zahlen keine, genau eine oder zwei verschiedene Lösungen haben.
A | \({\left( {x + 4} \right)^2} = 0\) |
B | \({\left( {x - 4} \right)^2} = 25\) |
C | \(x \cdot \left( {x - 4} \right) = 0\) |
D | \( - {x^2} - 16 = 0\) |
E | \({x^2} - 16 = 0\) |
F | \({x^2} - 8x + 16 = 0\) |
Aufgabenstellung:
Ordnen Sie jeder Lösungsmenge L die entsprechende quadratische Gleichung (aus A bis F) in der Menge der reellen Zahlen zu!
Deine Antwort | |
I: \(L = \left\{ {} \right\}\) | |
II: \(L = \left\{ { - 4;4} \right\}\) | |
III: \(L = \left\{ {0;4} \right\}\) | |
IV: \(L = \left\{ 4 \right\}\) |
Aufgabe 1347
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Die Anzahl der Lösungen der quadratischen Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) in der Menge der reellen Zahlen hängt von den Koeffizienten r, s und t ab.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die quadratische Gleichung \(r \cdot {x^2} + s \cdot x + t = 0\) hat genau dann für alle r ≠ 0; r, s, t ∈ ℝ ___1___ , wenn ___2___ gilt.
1 | |
zwei reelle Lösungen | A |
keine reelle Lösung | B |
genau eine reelle Lösung | C |
2 | |
\({r^2} - 4st > 0\) | I |
\({t^2} = 4rs\) | II |
\({s^2} - 4rt > 0\) | III |
Aufgabe 1395
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung mit genau zwei Lösungen
Gegeben ist die folgende quadratische Gleichung in der Unbekannten x über der Grundmenge ℝ: \({x^2} + 10 \cdot x + q = 0\) mit: \(q \in {\Bbb R}\)
Aufgabenstellung:
Geben Sie an, für welche Werte für q ∈ ℝ die Gleichung genau zwei Lösungen besitzt!
Aufgabe 1468
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die folgende quadratische Gleichung in der Unbekannten x über der Grundmenge \({\Bbb R}\)
\(\eqalign{ & 4{x^2} - d = 2 \cr & d \in {\Bbb R} \cr} \)
Aufgabenstellung:
Geben Sie denjenigen Wert für \(d \in {\Bbb R}\) an, für den die Gleichung genau eine Lösung hat!
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1490
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die quadratische Gleichung \({x^2} + p \cdot x - 12 = 0\)
Aufgabenstellung:
Bestimmen Sie denjenigen Wert für p, für den die Gleichung die Lösungsmenge \(L = \left\{ { - 2;\,\,6} \right\}\) hat!
Aufgabe 1540
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)
Aufgabenstellung:
Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
a=
Aufgabe 1567
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösungen einer quadratischen Gleichung
Gegeben ist eine quadratische Gleichung \({x^2} + p \cdot x - 3 = 0{\text{ mit }}p \in {\Bbb R}\)
1 | |
unendlich viele reelle Lösungen | A |
genau eine reelle Lösung | B |
keine reelle Lösung | C |
2 | |
\(\dfrac{{{p^2}}}{4} + 3 > 0\) | I |
\(\dfrac{{{p^2}}}{4} + 3 < 0\) | II |
\(\dfrac{{{p^2}}}{4} + 3 > 1\) | III |
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Diese Gleichung hat ____1____ , wenn ____2____ gilt.